Xiaojin Liu, Bangxin Liu, Junwen Wang, Hongbin Liu, Jiasheng Wu, Yiwei Qi, Yuan Liu, Hongtao Zhu, Chaoxi Li, Liu Yang, Jian Song, Guojie Yao, Weidong Tian, Kai Zhao, Lin Han, Kai Shu, Suojun Zhang, Jianghong Man, Chao You, Haohao Huang, Ran Li
{"title":"PHGDH activation fuels glioblastoma progression and radioresistance via serine synthesis pathway.","authors":"Xiaojin Liu, Bangxin Liu, Junwen Wang, Hongbin Liu, Jiasheng Wu, Yiwei Qi, Yuan Liu, Hongtao Zhu, Chaoxi Li, Liu Yang, Jian Song, Guojie Yao, Weidong Tian, Kai Zhao, Lin Han, Kai Shu, Suojun Zhang, Jianghong Man, Chao You, Haohao Huang, Ran Li","doi":"10.1186/s13046-025-03361-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioma stem-like cells (GSCs) are key drivers of treatment resistance and recurrence in glioblastoma (GBM). Phosphoglycerate dehydrogenase (PHGDH), a crucial enzyme in the de novo serine synthesis pathway (SSP), is implicated in tumorigenesis and therapy resistance across various cancers. However, its specific role in GBM, particularly in radioresistance, remains poorly understood.</p><p><strong>Methods: </strong>In silico analysis of GBM patient data assessed SSP enrichment and PHGDH expression linked with tumor stemness. Comparative gene expression analysis focused on PHGDH in paired GBM specimens and GSCs. Genetic and pharmacological loss-of-function assays were performed in vitro and in vivo to evaluate PHGDH's impact on GSC self-renewal and malignant progression. Comprehensive transcriptomic and metabolomic analyses, along with chromatin immunoprecipitation, mass spectrometry, and various other biochemical assays, were used to elucidate PHGDH-mediated mechanisms in GBM progression and radioresistance.</p><p><strong>Results: </strong>PHGDH expression is significantly elevated in GSCs, associated with aggressive glioma progression and poor clinical outcomes. PHGDH activation enhances GSC self-renewal by regulating redox homeostasis, facilitating one-carbon metabolism, and promoting DNA damage response via SSP activation. Importantly, MYC was identified as a crucial transcriptional regulator of PHGDH expression. Furthermore, genetic ablation or pharmacological inhibition of PHGDH markedly reduced tumor growth and increased tumor sensitivity to radiotherapy, thereby improving survival outcomes in orthotopic GSC-derived and patient-derived GBM xenograft models.</p><p><strong>Conclusions: </strong>This study underscores the pivotal role of MYC-mediated PHGDH activation in driving GSC malignant progression and radioresistance in GBM. Targeting PHGDH presents a promising approach to enhance radiotherapy efficacy in GBM patients.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"99"},"PeriodicalIF":11.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921657/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03361-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Glioma stem-like cells (GSCs) are key drivers of treatment resistance and recurrence in glioblastoma (GBM). Phosphoglycerate dehydrogenase (PHGDH), a crucial enzyme in the de novo serine synthesis pathway (SSP), is implicated in tumorigenesis and therapy resistance across various cancers. However, its specific role in GBM, particularly in radioresistance, remains poorly understood.
Methods: In silico analysis of GBM patient data assessed SSP enrichment and PHGDH expression linked with tumor stemness. Comparative gene expression analysis focused on PHGDH in paired GBM specimens and GSCs. Genetic and pharmacological loss-of-function assays were performed in vitro and in vivo to evaluate PHGDH's impact on GSC self-renewal and malignant progression. Comprehensive transcriptomic and metabolomic analyses, along with chromatin immunoprecipitation, mass spectrometry, and various other biochemical assays, were used to elucidate PHGDH-mediated mechanisms in GBM progression and radioresistance.
Results: PHGDH expression is significantly elevated in GSCs, associated with aggressive glioma progression and poor clinical outcomes. PHGDH activation enhances GSC self-renewal by regulating redox homeostasis, facilitating one-carbon metabolism, and promoting DNA damage response via SSP activation. Importantly, MYC was identified as a crucial transcriptional regulator of PHGDH expression. Furthermore, genetic ablation or pharmacological inhibition of PHGDH markedly reduced tumor growth and increased tumor sensitivity to radiotherapy, thereby improving survival outcomes in orthotopic GSC-derived and patient-derived GBM xenograft models.
Conclusions: This study underscores the pivotal role of MYC-mediated PHGDH activation in driving GSC malignant progression and radioresistance in GBM. Targeting PHGDH presents a promising approach to enhance radiotherapy efficacy in GBM patients.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.