Oscillatory and chaotic pattern dynamics driven by surface curvature.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Ryosuke Nishide, Shuji Ishihara
{"title":"Oscillatory and chaotic pattern dynamics driven by surface curvature.","authors":"Ryosuke Nishide, Shuji Ishihara","doi":"10.1103/PhysRevE.111.L022202","DOIUrl":null,"url":null,"abstract":"<p><p>Patterns on curved surfaces are ubiquitous, yet the influence of surface geometry on pattern dynamics remains elusive. We recently reported a mechanism of pattern propagation in which a static pattern on a flat plane becomes a propagating pattern on a curved surface [Phys. Rev. Lett. 128, 224101 (2022)0031-900710.1103/PhysRevLett.128.224101]. Here, we address whether surface curvature can drive more complex pattern dynamics beyond propagation. By employing a combination of weakly nonlinear analysis and numerical simulation, we theoretically determine the condition for the emergence of pattern dynamics on curved surfaces and show that oscillatory and chaotic pattern dynamics can emerge by controlling the surface shapes. These findings highlight a role of surface topography in pattern formation and dynamics.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2","pages":"L022202"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.L022202","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Patterns on curved surfaces are ubiquitous, yet the influence of surface geometry on pattern dynamics remains elusive. We recently reported a mechanism of pattern propagation in which a static pattern on a flat plane becomes a propagating pattern on a curved surface [Phys. Rev. Lett. 128, 224101 (2022)0031-900710.1103/PhysRevLett.128.224101]. Here, we address whether surface curvature can drive more complex pattern dynamics beyond propagation. By employing a combination of weakly nonlinear analysis and numerical simulation, we theoretically determine the condition for the emergence of pattern dynamics on curved surfaces and show that oscillatory and chaotic pattern dynamics can emerge by controlling the surface shapes. These findings highlight a role of surface topography in pattern formation and dynamics.

曲面曲率驱动下的振荡和混沌模式动力学。
曲面上的图案是普遍存在的,但表面几何形状对图案动力学的影响仍然难以捉摸。我们最近报道了一种模式传播机制,其中平面上的静态模式成为曲面上的传播模式[物理学]。[j].生物工程学报,2002,23 (4):555 - 557 . doi: 10.6038 / cjg201811002。在这里,我们讨论了表面曲率是否可以驱动更复杂的图案动态,而不仅仅是传播。采用弱非线性分析和数值模拟相结合的方法,从理论上确定了曲面上图案动力学产生的条件,并表明通过控制曲面形状可以产生振荡和混沌图案动力学。这些发现强调了表面地形在模式形成和动力学中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信