Memory-induced current reversal of Brownian motors.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Mateusz Wiśniewski, Jakub Spiechowicz
{"title":"Memory-induced current reversal of Brownian motors.","authors":"Mateusz Wiśniewski, Jakub Spiechowicz","doi":"10.1103/PhysRevE.111.024130","DOIUrl":null,"url":null,"abstract":"<p><p>The kinetics of biological motors such as kinesin or dynein is notably influenced by a viscoelastic intracellular environment. The characteristic relaxation time of the cytosol is not separable from the colloidal timescale and therefore their dynamics is inherently non-Markovian. In this paper, we consider a variant of a Brownian motor model, namely, a Brownian ratchet immersed in a correlated thermal bath, and we analyze how memory influences its dynamics. In particular, we demonstrate the memory-induced current reversal effect and explain this phenomenon by applying the effective mass approximation as well as uncovering the memory-induced dynamical localization of the motor trajectories in the phase space. Our results reveal new aspects of the role of memory in microscopic systems out of thermal equilibrium.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-1","pages":"024130"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.024130","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

The kinetics of biological motors such as kinesin or dynein is notably influenced by a viscoelastic intracellular environment. The characteristic relaxation time of the cytosol is not separable from the colloidal timescale and therefore their dynamics is inherently non-Markovian. In this paper, we consider a variant of a Brownian motor model, namely, a Brownian ratchet immersed in a correlated thermal bath, and we analyze how memory influences its dynamics. In particular, we demonstrate the memory-induced current reversal effect and explain this phenomenon by applying the effective mass approximation as well as uncovering the memory-induced dynamical localization of the motor trajectories in the phase space. Our results reveal new aspects of the role of memory in microscopic systems out of thermal equilibrium.

布朗电机的记忆感应电流反转。
生物马达的动力学,如动力蛋白或动力蛋白,明显受到细胞内粘弹性环境的影响。细胞质溶胶的特征松弛时间与胶体时间标度不可分离,因此它们的动力学本质上是非马尔可夫的。在本文中,我们考虑了布朗电机模型的一个变体,即浸入相关热浴中的布朗棘轮,并分析了记忆如何影响其动力学。特别是,我们证明了记忆诱导的电流反转效应,并通过应用有效质量近似来解释这一现象,以及揭示了记忆诱导的运动轨迹在相空间中的动态定位。我们的结果揭示了记忆在热平衡外的微观系统中作用的新方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信