Local topology and perestroikas in protein structure and folding dynamics.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Alexander Begun, Maxim N Chernodub, Alexander Molochkov, Antti J Niemi
{"title":"Local topology and perestroikas in protein structure and folding dynamics.","authors":"Alexander Begun, Maxim N Chernodub, Alexander Molochkov, Antti J Niemi","doi":"10.1103/PhysRevE.111.024406","DOIUrl":null,"url":null,"abstract":"<p><p>Methods of local topology are introduced to the field of protein physics. This is done by interpreting the folding and unfolding processes of a globular protein in terms of conformational bifurcations that alter the local topology of the proteins Cα backbone. The mathematical formulation extends Arnold's perestroikas to piecewise linear chains using the discrete Frenet frame formalism. In the low-temperature folded phase, the backbone geometry generalizes the concept of a Peano curve, with its modular building blocks modeled by soliton solutions of a discretized nonlinear Schrödinger equation. The onset of thermal unfolding begins when perestroikas change the flattening and branch points that determine the centers of solitons. When temperature increases, the perestroikas cascade, which leads to a progressive disintegration of the modular structures. The folding and unfolding processes are quantitatively characterized by a correlation function that describes the evolution of perestroikas under temperature changes. The approach provides a comprehensive framework for understanding the Physics of protein folding and unfolding transitions, contributing to the broader field of protein structure and dynamics.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-1","pages":"024406"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.024406","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Methods of local topology are introduced to the field of protein physics. This is done by interpreting the folding and unfolding processes of a globular protein in terms of conformational bifurcations that alter the local topology of the proteins Cα backbone. The mathematical formulation extends Arnold's perestroikas to piecewise linear chains using the discrete Frenet frame formalism. In the low-temperature folded phase, the backbone geometry generalizes the concept of a Peano curve, with its modular building blocks modeled by soliton solutions of a discretized nonlinear Schrödinger equation. The onset of thermal unfolding begins when perestroikas change the flattening and branch points that determine the centers of solitons. When temperature increases, the perestroikas cascade, which leads to a progressive disintegration of the modular structures. The folding and unfolding processes are quantitatively characterized by a correlation function that describes the evolution of perestroikas under temperature changes. The approach provides a comprehensive framework for understanding the Physics of protein folding and unfolding transitions, contributing to the broader field of protein structure and dynamics.

蛋白质结构和折叠动力学中的局部拓扑和重构。
将局部拓扑学方法引入蛋白质物理领域。这是通过根据改变蛋白质Cα主链局部拓扑结构的构象分叉来解释球形蛋白质的折叠和展开过程来完成的。该数学公式利用离散的Frenet框架形式主义将Arnold的理论扩展到分段线性链。在低温折叠阶段,主干几何推广了Peano曲线的概念,其模块化构建块由离散非线性Schrödinger方程的孤子解建模。当调整改变了决定孤子中心的平坦点和分支点时,热展开就开始了。当温度升高时,改革级联,这导致模块结构的逐步解体。在温度变化的条件下,用相关函数定量表征了褶皱和展开过程。该方法为理解蛋白质折叠和展开转变的物理学提供了一个全面的框架,为蛋白质结构和动力学的更广泛领域做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信