{"title":"Ligand-induced receptor multimerization achieves specificity enhancement of kinetic proofreading without associated costs.","authors":"Duncan Kirby, Anton Zilman","doi":"10.1103/PhysRevE.111.024408","DOIUrl":null,"url":null,"abstract":"<p><p>Kinetic proofreading (KPR) is a commonly invoked mechanism for specificity enhancement of receptor signaling. However, specificity enhancement comes at a cost of nonequilibrium energy input and signal attenuation. We show that ligand-induced multimeric receptor assembly can enhance receptor specificity to the same degree as KPR, yet without the need for out-of-equilibrium energy expenditure and signal loss. We show how multimeric receptor specificity enhancement arises from the amplification of affinity differences via sequential progression down a free energy landscape. We also show that multimeric receptor ligand recognition is more robust to stochastic fluctuations and molecular noise than KPR receptors. Finally, we show that multimeric receptors perform signaling tasks beyond specificity enhancement like absolute discrimination and aspects of ligand antagonism. Our results suggest that multimeric receptors may serve as a potent mechanism of ligand discrimination comparable to and potentially with more advantages than traditional proofreading.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-1","pages":"024408"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.024408","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Kinetic proofreading (KPR) is a commonly invoked mechanism for specificity enhancement of receptor signaling. However, specificity enhancement comes at a cost of nonequilibrium energy input and signal attenuation. We show that ligand-induced multimeric receptor assembly can enhance receptor specificity to the same degree as KPR, yet without the need for out-of-equilibrium energy expenditure and signal loss. We show how multimeric receptor specificity enhancement arises from the amplification of affinity differences via sequential progression down a free energy landscape. We also show that multimeric receptor ligand recognition is more robust to stochastic fluctuations and molecular noise than KPR receptors. Finally, we show that multimeric receptors perform signaling tasks beyond specificity enhancement like absolute discrimination and aspects of ligand antagonism. Our results suggest that multimeric receptors may serve as a potent mechanism of ligand discrimination comparable to and potentially with more advantages than traditional proofreading.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.