{"title":"Learning thresholds lead to stable language coexistence.","authors":"M V Tamm, E Heinsalu, S Scialla, M Patriarca","doi":"10.1103/PhysRevE.111.024304","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a language competition model that is based on the Abrams-Strogatz model and incorporates the effects of memory and learning in the dynamics of language shift. On a coarse-grained timescale, the effects of memory and learning can be expressed as thresholds on the speakers' fractions of the competing languages. In its simplest form, the resulting model is exactly solvable. Besides the consensus on one of the two languages, the model describes additional equilibrium states that are not present in the Abrams-Strogatz model: a stable dynamical coexistence of the two languages and a frozen state coinciding with the initial state. We show numerically that these results are preserved for threshold functions of a more general shape. The comparison of the model predictions with historical datasets demonstrates that while the Abrams-Strogatz model fails to describe some relevant language competition situations, the proposed model provides a good fitting.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-1","pages":"024304"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.024304","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a language competition model that is based on the Abrams-Strogatz model and incorporates the effects of memory and learning in the dynamics of language shift. On a coarse-grained timescale, the effects of memory and learning can be expressed as thresholds on the speakers' fractions of the competing languages. In its simplest form, the resulting model is exactly solvable. Besides the consensus on one of the two languages, the model describes additional equilibrium states that are not present in the Abrams-Strogatz model: a stable dynamical coexistence of the two languages and a frozen state coinciding with the initial state. We show numerically that these results are preserved for threshold functions of a more general shape. The comparison of the model predictions with historical datasets demonstrates that while the Abrams-Strogatz model fails to describe some relevant language competition situations, the proposed model provides a good fitting.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.