Yichen Fu, Justin R Angus, Hong Qin, Vasily I Geyko
{"title":"Energy-momentum-conserving stochastic differential equations and algorithms for the nonlinear Landau-Fokker-Planck equation.","authors":"Yichen Fu, Justin R Angus, Hong Qin, Vasily I Geyko","doi":"10.1103/PhysRevE.111.025211","DOIUrl":null,"url":null,"abstract":"<p><p>Coulomb collision is a fundamental diffusion process in plasmas that can be described by the Landau-Fokker-Planck (LFP) equation or the stochastic differential equation (SDE). While energy and momentum are conserved exactly in the LFP equation, they are conserved only on average by the conventional corresponding SDEs, suggesting that the underlying stochastic process may not be well defined by such SDEs. In this study, we derive new SDEs with exact energy-momentum conservation for the Coulomb collision by factorizing the collective effect of field particles into individual particles and enforcing Newton's third law. These SDEs, when interpreted in the Stratonovich sense, have a particularly simple form that represents pure diffusion between particles without drag. To demonstrate that the new SDEs correspond to the LFP equation, we develop numerical algorithms that converge to the SDEs and preserve discrete conservation laws. Simulation results are presented in a benchmark of various relaxation processes.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-2","pages":"025211"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.025211","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Coulomb collision is a fundamental diffusion process in plasmas that can be described by the Landau-Fokker-Planck (LFP) equation or the stochastic differential equation (SDE). While energy and momentum are conserved exactly in the LFP equation, they are conserved only on average by the conventional corresponding SDEs, suggesting that the underlying stochastic process may not be well defined by such SDEs. In this study, we derive new SDEs with exact energy-momentum conservation for the Coulomb collision by factorizing the collective effect of field particles into individual particles and enforcing Newton's third law. These SDEs, when interpreted in the Stratonovich sense, have a particularly simple form that represents pure diffusion between particles without drag. To demonstrate that the new SDEs correspond to the LFP equation, we develop numerical algorithms that converge to the SDEs and preserve discrete conservation laws. Simulation results are presented in a benchmark of various relaxation processes.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.