Energy-momentum-conserving stochastic differential equations and algorithms for the nonlinear Landau-Fokker-Planck equation.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Yichen Fu, Justin R Angus, Hong Qin, Vasily I Geyko
{"title":"Energy-momentum-conserving stochastic differential equations and algorithms for the nonlinear Landau-Fokker-Planck equation.","authors":"Yichen Fu, Justin R Angus, Hong Qin, Vasily I Geyko","doi":"10.1103/PhysRevE.111.025211","DOIUrl":null,"url":null,"abstract":"<p><p>Coulomb collision is a fundamental diffusion process in plasmas that can be described by the Landau-Fokker-Planck (LFP) equation or the stochastic differential equation (SDE). While energy and momentum are conserved exactly in the LFP equation, they are conserved only on average by the conventional corresponding SDEs, suggesting that the underlying stochastic process may not be well defined by such SDEs. In this study, we derive new SDEs with exact energy-momentum conservation for the Coulomb collision by factorizing the collective effect of field particles into individual particles and enforcing Newton's third law. These SDEs, when interpreted in the Stratonovich sense, have a particularly simple form that represents pure diffusion between particles without drag. To demonstrate that the new SDEs correspond to the LFP equation, we develop numerical algorithms that converge to the SDEs and preserve discrete conservation laws. Simulation results are presented in a benchmark of various relaxation processes.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-2","pages":"025211"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.025211","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Coulomb collision is a fundamental diffusion process in plasmas that can be described by the Landau-Fokker-Planck (LFP) equation or the stochastic differential equation (SDE). While energy and momentum are conserved exactly in the LFP equation, they are conserved only on average by the conventional corresponding SDEs, suggesting that the underlying stochastic process may not be well defined by such SDEs. In this study, we derive new SDEs with exact energy-momentum conservation for the Coulomb collision by factorizing the collective effect of field particles into individual particles and enforcing Newton's third law. These SDEs, when interpreted in the Stratonovich sense, have a particularly simple form that represents pure diffusion between particles without drag. To demonstrate that the new SDEs correspond to the LFP equation, we develop numerical algorithms that converge to the SDEs and preserve discrete conservation laws. Simulation results are presented in a benchmark of various relaxation processes.

非线性Landau-Fokker-Planck方程的能量动量守恒随机微分方程和算法。
库仑碰撞是等离子体中一种基本的扩散过程,可以用Landau-Fokker-Planck (LFP)方程或随机微分方程(SDE)来描述。虽然能量和动量在LFP方程中完全守恒,但它们仅在平均情况下被传统的相应sde守恒,这表明这些sde可能无法很好地定义潜在的随机过程。在这项研究中,我们通过将场粒子的集体效应分解为单个粒子并执行牛顿第三定律,得到了库仑碰撞中具有精确能量动量守恒的新SDEs。当用斯特拉托诺维奇的意义来解释这些SDEs时,它们有一个特别简单的形式,表示粒子之间没有阻力的纯粹扩散。为了证明新的SDEs对应于LFP方程,我们开发了收敛于SDEs并保持离散守恒律的数值算法。在各种松弛过程的基准中给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信