{"title":"Power-efficiency constraint for chemical motors.","authors":"R X Zhai, Hui Dong","doi":"10.1103/PhysRevE.111.024404","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical gradients provide the primordial energy for biological functions by driving the mechanical movement of microscopic engines. Their thermodynamic properties remain elusive, especially concerning the dynamic change in energy demand in biological systems. In this article, we derive a constraint relation between the output power and the conversion efficiency for a chemically fueled steady-state rotary motor analogous to the F_{0} motor of ATPase. We find that the efficiency at maximum power is half of the maximum quasistatic efficiency. These findings shall aid in the understanding of natural chemical engines and inspire the manual design and control of chemically fueled microscale engines.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-1","pages":"024404"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.024404","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical gradients provide the primordial energy for biological functions by driving the mechanical movement of microscopic engines. Their thermodynamic properties remain elusive, especially concerning the dynamic change in energy demand in biological systems. In this article, we derive a constraint relation between the output power and the conversion efficiency for a chemically fueled steady-state rotary motor analogous to the F_{0} motor of ATPase. We find that the efficiency at maximum power is half of the maximum quasistatic efficiency. These findings shall aid in the understanding of natural chemical engines and inspire the manual design and control of chemically fueled microscale engines.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.