{"title":"Emergent flocking in mixtures of antialigning self-propelled particles.","authors":"Rüdiger Kürsten, Jakob Mihatsch, Thomas Ihle","doi":"10.1103/PhysRevE.111.L023402","DOIUrl":null,"url":null,"abstract":"<p><p>We observe a flocking mechanism, the emergence of a state with global polar order, in mixed systems of self-propelled particles with purely antialigning interactions, i.e., the ground state for any pair of particles is to be opposedly oriented. In binary mixtures, we find that flocking can be realized by cross-species antialigning that is dominant compared to intraspecies antialignment. While the key mechanism can be understood within a mean-field description, beyond mean-field we develop an asymptotically exact Boltzmann-scattering theory from first principles. This theory yields analytical predictions for the flocking transition and shows excellent quantitative agreement with simulations of dilute systems. For large systems, we find either microphase separation or static patterns with patches or stripes that carry different polarization orientations.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2","pages":"L023402"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.L023402","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
We observe a flocking mechanism, the emergence of a state with global polar order, in mixed systems of self-propelled particles with purely antialigning interactions, i.e., the ground state for any pair of particles is to be opposedly oriented. In binary mixtures, we find that flocking can be realized by cross-species antialigning that is dominant compared to intraspecies antialignment. While the key mechanism can be understood within a mean-field description, beyond mean-field we develop an asymptotically exact Boltzmann-scattering theory from first principles. This theory yields analytical predictions for the flocking transition and shows excellent quantitative agreement with simulations of dilute systems. For large systems, we find either microphase separation or static patterns with patches or stripes that carry different polarization orientations.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.