Sri Savya Tanikella, Marie C Sigallon, Emilie Dressaire
{"title":"Dynamics of fluid-driven fractures across material heterogeneities.","authors":"Sri Savya Tanikella, Marie C Sigallon, Emilie Dressaire","doi":"10.1103/PhysRevE.111.025504","DOIUrl":null,"url":null,"abstract":"<p><p>Fracture propagation is highly sensitive to the conditions at the crack tip. In heterogeneous materials, microscale obstacles can cause propagation instabilities. Macroscopic heterogeneities modify the stress field over scales larger than the tip region. Here we experimentally investigate the propagation of fluid-driven fractures through multilayered materials. We focus on analyzing fracture profiles formed upon injection of a low-viscosity fluid into a two-layer hydrogel block. Experimental observations highlight the influence of the originating layer on fracture dynamics. Fractures that form in the softer layer are confined, with no penetration in the stiffer layer. Conversely, fractures initiated within the stiffer layer experience rapid fluid transfer into the softer layer when reaching the interface. We report the propagation dynamics and show that it is controlled by the toughness contrast between neighboring layers, which drives fluid flow. We model the coupling between elastic deformation, material toughness, and volume conservation. After a short transient regime, scaling arguments capture the dependence of the fracture geometry on material properties, injection parameters, and time. These results show that stiffness contrast can modify fracture propagation over large length scales and demonstrate the importance of macroscopic scale heterogeneities on fracture dynamics. These results have implications for climate change mitigation strategies involving the storage of heat and carbon dioxide in stratified underground rock formations.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-2","pages":"025504"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.025504","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Fracture propagation is highly sensitive to the conditions at the crack tip. In heterogeneous materials, microscale obstacles can cause propagation instabilities. Macroscopic heterogeneities modify the stress field over scales larger than the tip region. Here we experimentally investigate the propagation of fluid-driven fractures through multilayered materials. We focus on analyzing fracture profiles formed upon injection of a low-viscosity fluid into a two-layer hydrogel block. Experimental observations highlight the influence of the originating layer on fracture dynamics. Fractures that form in the softer layer are confined, with no penetration in the stiffer layer. Conversely, fractures initiated within the stiffer layer experience rapid fluid transfer into the softer layer when reaching the interface. We report the propagation dynamics and show that it is controlled by the toughness contrast between neighboring layers, which drives fluid flow. We model the coupling between elastic deformation, material toughness, and volume conservation. After a short transient regime, scaling arguments capture the dependence of the fracture geometry on material properties, injection parameters, and time. These results show that stiffness contrast can modify fracture propagation over large length scales and demonstrate the importance of macroscopic scale heterogeneities on fracture dynamics. These results have implications for climate change mitigation strategies involving the storage of heat and carbon dioxide in stratified underground rock formations.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.