Dynamics of fluid-driven fractures across material heterogeneities.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Sri Savya Tanikella, Marie C Sigallon, Emilie Dressaire
{"title":"Dynamics of fluid-driven fractures across material heterogeneities.","authors":"Sri Savya Tanikella, Marie C Sigallon, Emilie Dressaire","doi":"10.1103/PhysRevE.111.025504","DOIUrl":null,"url":null,"abstract":"<p><p>Fracture propagation is highly sensitive to the conditions at the crack tip. In heterogeneous materials, microscale obstacles can cause propagation instabilities. Macroscopic heterogeneities modify the stress field over scales larger than the tip region. Here we experimentally investigate the propagation of fluid-driven fractures through multilayered materials. We focus on analyzing fracture profiles formed upon injection of a low-viscosity fluid into a two-layer hydrogel block. Experimental observations highlight the influence of the originating layer on fracture dynamics. Fractures that form in the softer layer are confined, with no penetration in the stiffer layer. Conversely, fractures initiated within the stiffer layer experience rapid fluid transfer into the softer layer when reaching the interface. We report the propagation dynamics and show that it is controlled by the toughness contrast between neighboring layers, which drives fluid flow. We model the coupling between elastic deformation, material toughness, and volume conservation. After a short transient regime, scaling arguments capture the dependence of the fracture geometry on material properties, injection parameters, and time. These results show that stiffness contrast can modify fracture propagation over large length scales and demonstrate the importance of macroscopic scale heterogeneities on fracture dynamics. These results have implications for climate change mitigation strategies involving the storage of heat and carbon dioxide in stratified underground rock formations.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-2","pages":"025504"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.025504","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Fracture propagation is highly sensitive to the conditions at the crack tip. In heterogeneous materials, microscale obstacles can cause propagation instabilities. Macroscopic heterogeneities modify the stress field over scales larger than the tip region. Here we experimentally investigate the propagation of fluid-driven fractures through multilayered materials. We focus on analyzing fracture profiles formed upon injection of a low-viscosity fluid into a two-layer hydrogel block. Experimental observations highlight the influence of the originating layer on fracture dynamics. Fractures that form in the softer layer are confined, with no penetration in the stiffer layer. Conversely, fractures initiated within the stiffer layer experience rapid fluid transfer into the softer layer when reaching the interface. We report the propagation dynamics and show that it is controlled by the toughness contrast between neighboring layers, which drives fluid flow. We model the coupling between elastic deformation, material toughness, and volume conservation. After a short transient regime, scaling arguments capture the dependence of the fracture geometry on material properties, injection parameters, and time. These results show that stiffness contrast can modify fracture propagation over large length scales and demonstrate the importance of macroscopic scale heterogeneities on fracture dynamics. These results have implications for climate change mitigation strategies involving the storage of heat and carbon dioxide in stratified underground rock formations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信