Kimberly Hernandez, Caitlin H Nguyen, Girdhari Rijal
{"title":"Asporin increases the extracellular matrix cross-links and inhibits the cancer cell migration.","authors":"Kimberly Hernandez, Caitlin H Nguyen, Girdhari Rijal","doi":"10.1177/10104283241313441","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundMigrating strategies of the triple-negative breast cancer (TNBC) together with its role in the establishment of tumor microenvironment (TME), supporting metastasis, have been extensively studied. Extracellular matrix (ECM) is a major player for the TME, establishing the 3D spatial networks with interconnected pores necessary for the mechano-physiological function of the cells. Certain collagen aligners and cross-linkers which are necessary for the formation and the stabilization of ECM networks, however, have not been studied either in normal or in abnormal tissues. Complexities in cell-cell and cell-matrix interactions, and different in types and ratios of ECM proteins in a TME challenge to reveal the precise function of a particular protein that is exhibited by special cells and if specifically present in insignificant amount. Cancer-associated fibroblasts (CAFs) predominantly occupy the major stroma of a solid tumor where they deposit extracellular proteins in the excessive amount compared to other tumor-associated cells. For example, the TNBC tumor itself is positive for asporin (ASPN) since CAFs are major ASPN exhibitors. However, the TNBC cells express it insignificantly.ObjectiveThe increase in ECM and its networks suppresses the metastasis.MethodsHere, we studied the expression of collagen type I and ASPN in CAFS and MDA-MB-231 (MM231), and evaluated the role of ASPN in collagen alignment and crosslinking.ResultsTNBC cells have an insignificant expression of ASPN and scanty collagen fibers, some of which aggregate to form the stiff deranged fibers, forming large-size pores in ECM of cancer-cell-dominant outer core of TNBC that support cancer cell invasion and metastasis. Exogenous ASPN and fibroblast-ASPN supported for the collagen alignment and crosslinking that established the small-size pores in the ECM, inhibiting the cancer cell invasion.ConclusionsThe collagen aligner and the cross-linker, ASPN increases the ECM networks and decreases the migration, and this preliminary study provides the hope that ASPN might be used as an anti-metastatic drug after its confirmation through extensive studies in animal, and positive outcomes through preclinical trials.</p>","PeriodicalId":23364,"journal":{"name":"Tumor Biology","volume":"47 ","pages":"10104283241313441"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tumor Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10104283241313441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundMigrating strategies of the triple-negative breast cancer (TNBC) together with its role in the establishment of tumor microenvironment (TME), supporting metastasis, have been extensively studied. Extracellular matrix (ECM) is a major player for the TME, establishing the 3D spatial networks with interconnected pores necessary for the mechano-physiological function of the cells. Certain collagen aligners and cross-linkers which are necessary for the formation and the stabilization of ECM networks, however, have not been studied either in normal or in abnormal tissues. Complexities in cell-cell and cell-matrix interactions, and different in types and ratios of ECM proteins in a TME challenge to reveal the precise function of a particular protein that is exhibited by special cells and if specifically present in insignificant amount. Cancer-associated fibroblasts (CAFs) predominantly occupy the major stroma of a solid tumor where they deposit extracellular proteins in the excessive amount compared to other tumor-associated cells. For example, the TNBC tumor itself is positive for asporin (ASPN) since CAFs are major ASPN exhibitors. However, the TNBC cells express it insignificantly.ObjectiveThe increase in ECM and its networks suppresses the metastasis.MethodsHere, we studied the expression of collagen type I and ASPN in CAFS and MDA-MB-231 (MM231), and evaluated the role of ASPN in collagen alignment and crosslinking.ResultsTNBC cells have an insignificant expression of ASPN and scanty collagen fibers, some of which aggregate to form the stiff deranged fibers, forming large-size pores in ECM of cancer-cell-dominant outer core of TNBC that support cancer cell invasion and metastasis. Exogenous ASPN and fibroblast-ASPN supported for the collagen alignment and crosslinking that established the small-size pores in the ECM, inhibiting the cancer cell invasion.ConclusionsThe collagen aligner and the cross-linker, ASPN increases the ECM networks and decreases the migration, and this preliminary study provides the hope that ASPN might be used as an anti-metastatic drug after its confirmation through extensive studies in animal, and positive outcomes through preclinical trials.
期刊介绍:
Tumor Biology is a peer reviewed, international journal providing an open access forum for experimental and clinical cancer research. Tumor Biology covers all aspects of tumor markers, molecular biomarkers, tumor targeting, and mechanisms of tumor development and progression.
Specific topics of interest include, but are not limited to:
Pathway analyses,
Non-coding RNAs,
Circulating tumor cells,
Liquid biopsies,
Exosomes,
Epigenetics,
Cancer stem cells,
Tumor immunology and immunotherapy,
Tumor microenvironment,
Targeted therapies,
Therapy resistance
Cancer genetics,
Cancer risk screening.
Studies in other areas of basic, clinical and translational cancer research are also considered in order to promote connections and discoveries across different disciplines.
The journal publishes original articles, reviews, commentaries and guidelines on tumor marker use. All submissions are subject to rigorous peer review and are selected on the basis of whether the research is sound and deserves publication.
Tumor Biology is the Official Journal of the International Society of Oncology and BioMarkers (ISOBM).