{"title":"Total Astragalus saponins promote ferroptosis in gastric cancer cells by upregulating SIRT3.","authors":"Yue Zou, Jingling Zhao, Chengyin Li, Rui Wang, Xiaocui Jiang, Zhongyi Zhu, Qiyuan Wang, Min Xiao","doi":"10.21037/tcr-24-1421","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer (GC) is a malignant tumor of the digestive tract originating from the epithelial cells of the gastric mucosa, which is highly invasive and heterogeneous, posing a serious threat to human health. In recent years, ferroptosis, as a novel mode of programmed cell death, has shown potential anticancer effects in tumor therapy. Total Astragalus saponins (TAS), a natural product derived from Astragalus membranaceus, have been shown to possess various pharmacological activities, including anticancer effects. This study aimed to investigate the effects of TAS on GC cells, focusing on the mechanism of action of its regulation of the silent information regulator 3 (SIRT3) in inducing ferroptosis in GC cells.</p><p><strong>Methods: </strong>We treated SGC-7901 cells with TAS at concentrations of 50, 100, and 200 µg/mL. After TAS treatment, the SGC-7901 cells were transfected with a vector designed to knock down SIRT3 expression. We assessed cell proliferation, viability, and apoptosis using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assay), colony formation assay, and flow cytometry. SIRT3 expression was measured by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Fe<sup>2+</sup>, malondialdehyde (MDA), lactate dehydrogenase (LDH), and superoxide dismutase assay kits were used to detect the level of reactive oxygen species (ROS) by fluorescent probe assay. Western blot was used to detect apoptosis-related proteins and SIRT3 protein expression.</p><p><strong>Results: </strong>TAS dose-dependently inhibited SGC-7901 cell proliferation and viability (P<0.05) and induced apoptosis (P<0.05). TAS promoted the expression of SIRT3 and ACSL4 proteins (P<0.05), inhibited the expression of SLC7A11 and GPX4 proteins (P<0.05), and induced ferroptosis of SGC-7901 cells (P<0.05). Knockdown of the SIRT3 gene attenuated the effect of TAS treatment on ferroptosis (P<0.05).</p><p><strong>Conclusions: </strong>TAS has therapeutic potential for GC and can effectively inhibit the proliferation and viability of SGC-7901 cells, and the mechanism may be that TAS upregulates SIRT3 to promote the ferroptosis of SGC-7901 cells.</p>","PeriodicalId":23216,"journal":{"name":"Translational cancer research","volume":"14 2","pages":"1311-1322"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tcr-24-1421","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Gastric cancer (GC) is a malignant tumor of the digestive tract originating from the epithelial cells of the gastric mucosa, which is highly invasive and heterogeneous, posing a serious threat to human health. In recent years, ferroptosis, as a novel mode of programmed cell death, has shown potential anticancer effects in tumor therapy. Total Astragalus saponins (TAS), a natural product derived from Astragalus membranaceus, have been shown to possess various pharmacological activities, including anticancer effects. This study aimed to investigate the effects of TAS on GC cells, focusing on the mechanism of action of its regulation of the silent information regulator 3 (SIRT3) in inducing ferroptosis in GC cells.
Methods: We treated SGC-7901 cells with TAS at concentrations of 50, 100, and 200 µg/mL. After TAS treatment, the SGC-7901 cells were transfected with a vector designed to knock down SIRT3 expression. We assessed cell proliferation, viability, and apoptosis using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assay), colony formation assay, and flow cytometry. SIRT3 expression was measured by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Fe2+, malondialdehyde (MDA), lactate dehydrogenase (LDH), and superoxide dismutase assay kits were used to detect the level of reactive oxygen species (ROS) by fluorescent probe assay. Western blot was used to detect apoptosis-related proteins and SIRT3 protein expression.
Results: TAS dose-dependently inhibited SGC-7901 cell proliferation and viability (P<0.05) and induced apoptosis (P<0.05). TAS promoted the expression of SIRT3 and ACSL4 proteins (P<0.05), inhibited the expression of SLC7A11 and GPX4 proteins (P<0.05), and induced ferroptosis of SGC-7901 cells (P<0.05). Knockdown of the SIRT3 gene attenuated the effect of TAS treatment on ferroptosis (P<0.05).
Conclusions: TAS has therapeutic potential for GC and can effectively inhibit the proliferation and viability of SGC-7901 cells, and the mechanism may be that TAS upregulates SIRT3 to promote the ferroptosis of SGC-7901 cells.
期刊介绍:
Translational Cancer Research (Transl Cancer Res TCR; Print ISSN: 2218-676X; Online ISSN 2219-6803; http://tcr.amegroups.com/) is an Open Access, peer-reviewed journal, indexed in Science Citation Index Expanded (SCIE). TCR publishes laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer; results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of cancer patients. The focus of TCR is original, peer-reviewed, science-based research that successfully advances clinical medicine toward the goal of improving patients'' quality of life. The editors and an international advisory group of scientists and clinician-scientists as well as other experts will hold TCR articles to the high-quality standards. We accept Original Articles as well as Review Articles, Editorials and Brief Articles.