The miR-155-5p/FBXO11 axis inhibits the progression of gastric cancer via the mTOR pathway.

IF 1.5 4区 医学 Q4 ONCOLOGY
Translational cancer research Pub Date : 2025-02-28 Epub Date: 2025-02-26 DOI:10.21037/tcr-2025-8
Tao Yuan, Haiyan Liu, Fangfang Li, Qingyue Meng, Yajuan Wang, Mei Yuan
{"title":"The miR-155-5p/<i>FBXO11</i> axis inhibits the progression of gastric cancer via the mTOR pathway.","authors":"Tao Yuan, Haiyan Liu, Fangfang Li, Qingyue Meng, Yajuan Wang, Mei Yuan","doi":"10.21037/tcr-2025-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer (GC) is a leading cause of cancer-related death. MicroRNAs (miRNAs or miRs) play a crucial role in the pathology of GC, including cell proliferation, invasion, and metastasis. In this study, genes targeted by miR-155-5p were predicted using bioinformatic tools. We found that the expression of miR-155-5p in GC cell lines differed relative to the expression of F-box protein 11 (<i>FBXO11</i>), which is involved in the regulation of cellular processes. This study sought to examine the function of miR-155-5p and the precise mechanism underlying its regulatory function in modulating proliferation and apoptosis in GC.</p><p><strong>Methods: </strong>The luciferase reporter assay results showed that miR-155-5p bound directly to the three prime untranslated region (3'-UTR) of <i>FBXO11</i>, which further downregulated <i>FBXO11</i> expression. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western-blot analyses confirmed that miR-155-5p negatively regulated the messenger RNA (mRNA) and protein expression of <i>FBXO11</i>. The effects of <i>FBXO11</i> on cell proliferation and apoptosis in GC cell lines was further examined using Cell Counting Kit-8 (CCK-8) and flow cytometry.</p><p><strong>Results: </strong>We found that <i>FBXO11</i> promoted proliferation and decreased apoptosis in GC cells. Conversely, rescue experiments showed that the knockdown of <i>FBXO11</i> limited the effects of miR-155-5p on the proliferation and apoptosis of GC cells, providing further evidence that <i>FBXO11</i> is a functional target of miR-155-5p. Further, the overexpression of miR-155-5p inhibited cell growth via the targeted inhibition of <i>FBXO11</i> that regulated mammalian target of rapamycin (mTOR) signaling pathway in the GC cells.</p><p><strong>Conclusions: </strong>Overall, these results showed that miR-155-5p may serve as a tumor suppressor in GC and that the miR-155-5p/<i>FBXO11</i> axis regulates tumor progression via the mTOR signaling pathway. Consequently, our findings may lead to the development a novel treatment strategy for GC.</p>","PeriodicalId":23216,"journal":{"name":"Translational cancer research","volume":"14 2","pages":"1375-1387"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tcr-2025-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Gastric cancer (GC) is a leading cause of cancer-related death. MicroRNAs (miRNAs or miRs) play a crucial role in the pathology of GC, including cell proliferation, invasion, and metastasis. In this study, genes targeted by miR-155-5p were predicted using bioinformatic tools. We found that the expression of miR-155-5p in GC cell lines differed relative to the expression of F-box protein 11 (FBXO11), which is involved in the regulation of cellular processes. This study sought to examine the function of miR-155-5p and the precise mechanism underlying its regulatory function in modulating proliferation and apoptosis in GC.

Methods: The luciferase reporter assay results showed that miR-155-5p bound directly to the three prime untranslated region (3'-UTR) of FBXO11, which further downregulated FBXO11 expression. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western-blot analyses confirmed that miR-155-5p negatively regulated the messenger RNA (mRNA) and protein expression of FBXO11. The effects of FBXO11 on cell proliferation and apoptosis in GC cell lines was further examined using Cell Counting Kit-8 (CCK-8) and flow cytometry.

Results: We found that FBXO11 promoted proliferation and decreased apoptosis in GC cells. Conversely, rescue experiments showed that the knockdown of FBXO11 limited the effects of miR-155-5p on the proliferation and apoptosis of GC cells, providing further evidence that FBXO11 is a functional target of miR-155-5p. Further, the overexpression of miR-155-5p inhibited cell growth via the targeted inhibition of FBXO11 that regulated mammalian target of rapamycin (mTOR) signaling pathway in the GC cells.

Conclusions: Overall, these results showed that miR-155-5p may serve as a tumor suppressor in GC and that the miR-155-5p/FBXO11 axis regulates tumor progression via the mTOR signaling pathway. Consequently, our findings may lead to the development a novel treatment strategy for GC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
252
期刊介绍: Translational Cancer Research (Transl Cancer Res TCR; Print ISSN: 2218-676X; Online ISSN 2219-6803; http://tcr.amegroups.com/) is an Open Access, peer-reviewed journal, indexed in Science Citation Index Expanded (SCIE). TCR publishes laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer; results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of cancer patients. The focus of TCR is original, peer-reviewed, science-based research that successfully advances clinical medicine toward the goal of improving patients'' quality of life. The editors and an international advisory group of scientists and clinician-scientists as well as other experts will hold TCR articles to the high-quality standards. We accept Original Articles as well as Review Articles, Editorials and Brief Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信