Incorporating Additional Evidence as Prior Information to Resolve Non-Identifiability in Bayesian Disease Model Calibration: A Tutorial.

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Daria Semochkina, Cathal D Walsh
{"title":"Incorporating Additional Evidence as Prior Information to Resolve Non-Identifiability in Bayesian Disease Model Calibration: A Tutorial.","authors":"Daria Semochkina, Cathal D Walsh","doi":"10.1002/sim.70039","DOIUrl":null,"url":null,"abstract":"<p><p>Disease models are used to examine the likely impact of therapies, interventions, and public policy changes. Ensuring that these are well calibrated on the basis of available data and that the uncertainty in their projections is properly quantified is an important part of the process. The question of non-identifiability poses a challenge to disease model calibration where multiple parameter sets generate identical model outputs. For statisticians evaluating the impact of policy interventions such as screening or vaccination, this is a critical issue. This study explores the use of the Bayesian framework to provide a natural way to calibrate models and address non-identifiability in a probabilistic fashion in the context of disease modeling. We present Bayesian approaches for incorporating expert knowledge and external data to ensure that appropriately informative priors are specified on the joint parameter space. These approaches are applied to two common disease models: a basic susceptible-infected-susceptible (SIS) model and a much more complex agent-based model which has previously been used to address public policy questions in HPV and cervical cancer. The conditions that allow the problem of non-identifiability to be resolved are demonstrated for the SIS model. For the larger HPV model, an overview of the findings is presented, but of key importance is a discussion on how the non-identifiability impacts the calibration process. Through case studies, we demonstrate how informative priors can help resolve non-identifiability and improve model inference. We also discuss how sensitivity analysis can be used to assess the impact of prior specifications on model results. Overall, this work provides an important tutorial for researchers interested in applying Bayesian methods to calibrate models and handle non-identifiability in disease models.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 6","pages":"e70039"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70039","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Disease models are used to examine the likely impact of therapies, interventions, and public policy changes. Ensuring that these are well calibrated on the basis of available data and that the uncertainty in their projections is properly quantified is an important part of the process. The question of non-identifiability poses a challenge to disease model calibration where multiple parameter sets generate identical model outputs. For statisticians evaluating the impact of policy interventions such as screening or vaccination, this is a critical issue. This study explores the use of the Bayesian framework to provide a natural way to calibrate models and address non-identifiability in a probabilistic fashion in the context of disease modeling. We present Bayesian approaches for incorporating expert knowledge and external data to ensure that appropriately informative priors are specified on the joint parameter space. These approaches are applied to two common disease models: a basic susceptible-infected-susceptible (SIS) model and a much more complex agent-based model which has previously been used to address public policy questions in HPV and cervical cancer. The conditions that allow the problem of non-identifiability to be resolved are demonstrated for the SIS model. For the larger HPV model, an overview of the findings is presented, but of key importance is a discussion on how the non-identifiability impacts the calibration process. Through case studies, we demonstrate how informative priors can help resolve non-identifiability and improve model inference. We also discuss how sensitivity analysis can be used to assess the impact of prior specifications on model results. Overall, this work provides an important tutorial for researchers interested in applying Bayesian methods to calibrate models and handle non-identifiability in disease models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信