Clinical characterization and prognostic modeling of bladder cancer patients with a history of prior tumors: a SEER database analysis.

IF 1.5 4区 医学 Q4 ONCOLOGY
Translational cancer research Pub Date : 2025-02-28 Epub Date: 2025-02-26 DOI:10.21037/tcr-24-1530
Zhengli Liu, Haojie Zhang, Rongtuan Luo, Bin Wang, Tengfei Li, Baoshou Zheng
{"title":"Clinical characterization and prognostic modeling of bladder cancer patients with a history of prior tumors: a SEER database analysis.","authors":"Zhengli Liu, Haojie Zhang, Rongtuan Luo, Bin Wang, Tengfei Li, Baoshou Zheng","doi":"10.21037/tcr-24-1530","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bladder cancer is one of the most prevalent malignancies within the urinary system, with incidence and mortality rates showing a global upward trend. This study aims to examine the clinical characteristics of bladder cancer patients with a history of prior malignancies and to develop a prognostic model using extensive data from the Surveillance, Epidemiology, and End Results (SEER) database to inform clinical treatment strategies.</p><p><strong>Methods: </strong>Data from bladder cancer patients diagnosed between 2011 and 2015 were extracted using SEER*Stat software. Statistical analyses, including Kaplan-Meier survival curves, and Cox regression, were conducted using R software version 3.6.1 to develop a nomogram model. The predictive performance of the nomogram was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) and the concordance index (C-index).</p><p><strong>Results: </strong>A total of 12,260 bladder cancer patients were analyzed, including 8,959 individuals with no prior tumor history and 3,301 individuals with a history of previous tumors. The mean survival duration for patients with a prior tumor history was 56.04±39.96 months, significantly lower than the 70.28±39.36 months for patients without a prior tumor history (P<0.001). Significant differences were observed between the two groups across various clinical characteristics, such as age, race, gender, marital status, tumor location, tumor stage, and tumor grade. Multifactorial analysis identified age, race, gender, marital status, tumor grade, tumor stage, tumor histological type, surgical intervention, radiotherapy, chemotherapy, and prior tumor history as independent prognostic factors influencing survival. A nomogram was subsequently developed to predict overall mortality risk and 3- and 5-year survival rates, demonstrating robust predictive performance with a C-index and AUC exceeding 0.70.</p><p><strong>Conclusions: </strong>Patients with a history of tumors exhibited lower survival rates and distinct clinical characteristics. The developed nomogram accurately predicts overall mortality and 3- and 5-year survival rates, offering potential for personalized prognostic assessments in clinical practice. Future research should validate the model's generalizability and include additional biological factors to enhance its predictive power.</p>","PeriodicalId":23216,"journal":{"name":"Translational cancer research","volume":"14 2","pages":"1111-1123"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912062/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tcr-24-1530","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Bladder cancer is one of the most prevalent malignancies within the urinary system, with incidence and mortality rates showing a global upward trend. This study aims to examine the clinical characteristics of bladder cancer patients with a history of prior malignancies and to develop a prognostic model using extensive data from the Surveillance, Epidemiology, and End Results (SEER) database to inform clinical treatment strategies.

Methods: Data from bladder cancer patients diagnosed between 2011 and 2015 were extracted using SEER*Stat software. Statistical analyses, including Kaplan-Meier survival curves, and Cox regression, were conducted using R software version 3.6.1 to develop a nomogram model. The predictive performance of the nomogram was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) and the concordance index (C-index).

Results: A total of 12,260 bladder cancer patients were analyzed, including 8,959 individuals with no prior tumor history and 3,301 individuals with a history of previous tumors. The mean survival duration for patients with a prior tumor history was 56.04±39.96 months, significantly lower than the 70.28±39.36 months for patients without a prior tumor history (P<0.001). Significant differences were observed between the two groups across various clinical characteristics, such as age, race, gender, marital status, tumor location, tumor stage, and tumor grade. Multifactorial analysis identified age, race, gender, marital status, tumor grade, tumor stage, tumor histological type, surgical intervention, radiotherapy, chemotherapy, and prior tumor history as independent prognostic factors influencing survival. A nomogram was subsequently developed to predict overall mortality risk and 3- and 5-year survival rates, demonstrating robust predictive performance with a C-index and AUC exceeding 0.70.

Conclusions: Patients with a history of tumors exhibited lower survival rates and distinct clinical characteristics. The developed nomogram accurately predicts overall mortality and 3- and 5-year survival rates, offering potential for personalized prognostic assessments in clinical practice. Future research should validate the model's generalizability and include additional biological factors to enhance its predictive power.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
252
期刊介绍: Translational Cancer Research (Transl Cancer Res TCR; Print ISSN: 2218-676X; Online ISSN 2219-6803; http://tcr.amegroups.com/) is an Open Access, peer-reviewed journal, indexed in Science Citation Index Expanded (SCIE). TCR publishes laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer; results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of cancer patients. The focus of TCR is original, peer-reviewed, science-based research that successfully advances clinical medicine toward the goal of improving patients'' quality of life. The editors and an international advisory group of scientists and clinician-scientists as well as other experts will hold TCR articles to the high-quality standards. We accept Original Articles as well as Review Articles, Editorials and Brief Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信