Unitary description of the Jaynes-Cummings model under fractional-time dynamics.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Danilo Cius
{"title":"Unitary description of the Jaynes-Cummings model under fractional-time dynamics.","authors":"Danilo Cius","doi":"10.1103/PhysRevE.111.024110","DOIUrl":null,"url":null,"abstract":"<p><p>The time-evolution operator corresponding to the fractional-time Schrödinger equation is nonunitary because it fails to preserve the norm of the vector state in the course of its evolution. However, in the context of the time-dependent non-Hermitian quantum formalism applied to the time-fractional dynamics, it has been demonstrated that a unitary evolution can be achieved for a traceless two-level Hamiltonian. This is accomplished by considering a dynamical Hilbert space embedding a time-dependent metric operator concerning which the system unitarily evolves in time. This allows for a suitable description of a quantum system consistent with the standard quantum mechanical principles. In this work, we investigate the Jaynes-Cummings model in the fractional-time scenario taking into account the fractional-order parameter α and its effect in unitary quantum dynamics. We analyze the well-known dynamical properties, such as the atomic population inversion and the atom-field entanglement, when the atom starts in its excited state and the field in a coherent state.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-1","pages":"024110"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.024110","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

The time-evolution operator corresponding to the fractional-time Schrödinger equation is nonunitary because it fails to preserve the norm of the vector state in the course of its evolution. However, in the context of the time-dependent non-Hermitian quantum formalism applied to the time-fractional dynamics, it has been demonstrated that a unitary evolution can be achieved for a traceless two-level Hamiltonian. This is accomplished by considering a dynamical Hilbert space embedding a time-dependent metric operator concerning which the system unitarily evolves in time. This allows for a suitable description of a quantum system consistent with the standard quantum mechanical principles. In this work, we investigate the Jaynes-Cummings model in the fractional-time scenario taking into account the fractional-order parameter α and its effect in unitary quantum dynamics. We analyze the well-known dynamical properties, such as the atomic population inversion and the atom-field entanglement, when the atom starts in its excited state and the field in a coherent state.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信