A Molecular Representation to Identify Isofunctional Molecules.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL
Philippe Pinel, Gwenn Guichaoua, Nicolas Devaux, Yann Gaston-Mathé, Brice Hoffmann, Véronique Stoven
{"title":"A Molecular Representation to Identify Isofunctional Molecules.","authors":"Philippe Pinel, Gwenn Guichaoua, Nicolas Devaux, Yann Gaston-Mathé, Brice Hoffmann, Véronique Stoven","doi":"10.1002/minf.202400159","DOIUrl":null,"url":null,"abstract":"<p><p>The challenges of drug discovery from hit identification to clinical development sometimes involves addressing scaffold hopping issues, in order to optimise molecular biological activity or ADME properties, or mitigate toxicology concerns of a drug candidate. Docking is usually viewed as the method of choice for identification of isofunctional molecules, i. e. highly dissimilar molecules that share common binding modes with a protein target. However, the structure of the protein may not be suitable for docking because of a low resolution, or may even be unknown. This problem is frequently encountered in the case of membrane proteins, although they constitute an important category of the druggable proteome. In such cases, ligand-based approaches offer promise but are often inadequate to handle large-step scaffold hopping, because they usually rely on molecular structure. Therefore, we propose the Interaction Fingerprints Profile (IFPP), a molecular representation that captures molecules binding modes based on docking experiments against a panel of diverse high-quality proteins structures. Evaluation on the LH benchmark demonstrates the interest of IFPP for identification of isofunctional molecules. Nevertheless, computation of IFPPs is expensive, which limits its scalability for screening very large molecular libraries. We propose to overcome this limitation by leveraging Metric Learning approaches, allowing fast estimation of molecules IFPP similarities, thus providing an efficient pre-screening strategy that in applicable to very large molecular libraries. Overall, our results suggest that IFPP provides an interesting and complementary tool alongside existing methods, in order to address challenging scaffold hopping problems effectively in drug discovery.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 3","pages":"e202400159"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400159","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The challenges of drug discovery from hit identification to clinical development sometimes involves addressing scaffold hopping issues, in order to optimise molecular biological activity or ADME properties, or mitigate toxicology concerns of a drug candidate. Docking is usually viewed as the method of choice for identification of isofunctional molecules, i. e. highly dissimilar molecules that share common binding modes with a protein target. However, the structure of the protein may not be suitable for docking because of a low resolution, or may even be unknown. This problem is frequently encountered in the case of membrane proteins, although they constitute an important category of the druggable proteome. In such cases, ligand-based approaches offer promise but are often inadequate to handle large-step scaffold hopping, because they usually rely on molecular structure. Therefore, we propose the Interaction Fingerprints Profile (IFPP), a molecular representation that captures molecules binding modes based on docking experiments against a panel of diverse high-quality proteins structures. Evaluation on the LH benchmark demonstrates the interest of IFPP for identification of isofunctional molecules. Nevertheless, computation of IFPPs is expensive, which limits its scalability for screening very large molecular libraries. We propose to overcome this limitation by leveraging Metric Learning approaches, allowing fast estimation of molecules IFPP similarities, thus providing an efficient pre-screening strategy that in applicable to very large molecular libraries. Overall, our results suggest that IFPP provides an interesting and complementary tool alongside existing methods, in order to address challenging scaffold hopping problems effectively in drug discovery.

识别同功能分子的分子表征。
从hit鉴定到临床开发,药物发现的挑战有时涉及解决支架跳跃问题,以优化分子生物学活性或ADME特性,或减轻候选药物的毒理学问题。对接通常被认为是鉴定同功能分子的首选方法。与蛋白质靶标具有共同结合模式的高度不同的分子。然而,由于分辨率低,蛋白质的结构可能不适合对接,甚至可能是未知的。尽管膜蛋白构成了可药物蛋白质组的一个重要类别,但在膜蛋白的情况下经常遇到这个问题。在这种情况下,基于配体的方法提供了希望,但通常不足以处理大台阶支架跳跃,因为它们通常依赖于分子结构。因此,我们提出了相互作用指纹图谱(IFPP),这是一种基于对接实验捕获分子结合模式的分子表征,该实验基于一组不同的高质量蛋白质结构。对LH基准的评价表明IFPP对鉴定同功能分子的兴趣。然而,IFPPs的计算成本很高,这限制了它在筛选非常大的分子库时的可扩展性。我们建议利用度量学习方法来克服这一限制,允许快速估计分子IFPP相似性,从而提供一种适用于非常大的分子库的有效预筛选策略。总的来说,我们的结果表明IFPP提供了一个有趣的和补充的工具,除了现有的方法,为了有效地解决药物发现中具有挑战性的支架跳跃问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信