Imu-based kinematic analysis to enhance upper limb motor function assessment in neuromuscular diseases.

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Alessandra Favata, Roger Gallart-Agut, Luc van Noort, Jesica Exposito-Escudero, Julita Medina-Cantillo, Carme Torras, Daniel Natera-de Benito, Josep M Font-Llagunes, Rosa Pàmies-Vilà
{"title":"Imu-based kinematic analysis to enhance upper limb motor function assessment in neuromuscular diseases.","authors":"Alessandra Favata, Roger Gallart-Agut, Luc van Noort, Jesica Exposito-Escudero, Julita Medina-Cantillo, Carme Torras, Daniel Natera-de Benito, Josep M Font-Llagunes, Rosa Pàmies-Vilà","doi":"10.1186/s12984-025-01602-2","DOIUrl":null,"url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) are neuromuscular diseases that lead to progressive muscle degeneration and weakness. Recent therapeutic advances for DMD and SMA highlight the need for accurate clinical evaluation. Traditionally, motor function of the upper limbs is assessed using motor function scales. However, these scales are influenced by clinician's interpretation and may lack accuracy. For this reason, clinicians are becoming interested in finding alternative solutions. In this context, Inertial Measurement Units (IMUs) have gained popularity, offering the possibility to quantitatively and objectively analyze motor function of patients to support clinicians' assessments. We analyzed upper limb kinematics of two groups of children with neuromuscular diseases, seventeen DMD patients and fifteen SMA patients, while performing the corresponding clinical assessment. These two groups were further subdivided into two categories (Category A and Category B), according to disease severity (Brooke scores <math><mrow><mo>≤</mo> <mn>2</mn></mrow> </math> and Brooke scores <math><mrow><mo>></mo> <mn>2</mn></mrow> </math> , respectively). The results were compared against a group of ten healthy children. The metrics showing the strongest correlation with the clinical score were the workspace area in the frontal and transverse plane (DMD: <math><mi>ρ</mi></math> = 0.94 and <math><mi>ρ</mi></math> = 0.90; SMA: <math><mi>ρ</mi></math> = 0.78 and <math><mi>ρ</mi></math> = 0.81) and the workspace volume (DMD: <math><mi>ρ</mi></math> = 0.92; SMA <math><mi>ρ</mi></math> = 0.81). Additionally, statistically significant differences were found not only between healthy children and those with neuromuscular disease, but also across severity levels within the patient group. These results represent a first step toward validating IMU-based systems to helping clinicians to accurately quantify the motor status of children with neuromuscular diseases. Furthermore, data collected with inertial sensors can provide clinicians with additional information not available through subjective observation.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"63"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-025-01602-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) are neuromuscular diseases that lead to progressive muscle degeneration and weakness. Recent therapeutic advances for DMD and SMA highlight the need for accurate clinical evaluation. Traditionally, motor function of the upper limbs is assessed using motor function scales. However, these scales are influenced by clinician's interpretation and may lack accuracy. For this reason, clinicians are becoming interested in finding alternative solutions. In this context, Inertial Measurement Units (IMUs) have gained popularity, offering the possibility to quantitatively and objectively analyze motor function of patients to support clinicians' assessments. We analyzed upper limb kinematics of two groups of children with neuromuscular diseases, seventeen DMD patients and fifteen SMA patients, while performing the corresponding clinical assessment. These two groups were further subdivided into two categories (Category A and Category B), according to disease severity (Brooke scores 2 and Brooke scores > 2 , respectively). The results were compared against a group of ten healthy children. The metrics showing the strongest correlation with the clinical score were the workspace area in the frontal and transverse plane (DMD: ρ = 0.94 and ρ = 0.90; SMA: ρ = 0.78 and ρ = 0.81) and the workspace volume (DMD: ρ = 0.92; SMA ρ = 0.81). Additionally, statistically significant differences were found not only between healthy children and those with neuromuscular disease, but also across severity levels within the patient group. These results represent a first step toward validating IMU-based systems to helping clinicians to accurately quantify the motor status of children with neuromuscular diseases. Furthermore, data collected with inertial sensors can provide clinicians with additional information not available through subjective observation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信