Hendrik Šuvalov, Mihkel Lepson, Veronika Kukk, Maria Malk, Neeme Ilves, Hele-Andra Kuulmets, Raivo Kolde
{"title":"Using Synthetic Health Care Data to Leverage Large Language Models for Named Entity Recognition: Development and Validation Study.","authors":"Hendrik Šuvalov, Mihkel Lepson, Veronika Kukk, Maria Malk, Neeme Ilves, Hele-Andra Kuulmets, Raivo Kolde","doi":"10.2196/66279","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Named entity recognition (NER) plays a vital role in extracting critical medical entities from health care records, facilitating applications such as clinical decision support and data mining. Developing robust NER models for low-resource languages, such as Estonian, remains a challenge due to the scarcity of annotated data and domain-specific pretrained models. Large language models (LLMs) have proven to be promising in understanding text from any language or domain.</p><p><strong>Objective: </strong>This study addresses the development of medical NER models for low-resource languages, specifically Estonian. We propose a novel approach by generating synthetic health care data and using LLMs to annotate them. These synthetic data are then used to train a high-performing NER model, which is applied to real-world medical texts, preserving patient data privacy.</p><p><strong>Methods: </strong>Our approach to overcoming the shortage of annotated Estonian health care texts involves a three-step pipeline: (1) synthetic health care data are generated using a locally trained GPT-2 model on Estonian medical records, (2) the synthetic data are annotated with LLMs, specifically GPT-3.5-Turbo and GPT-4, and (3) the annotated synthetic data are then used to fine-tune an NER model, which is later tested on real-world medical data. This paper compares the performance of different prompts; assesses the impact of GPT-3.5-Turbo, GPT-4, and a local LLM; and explores the relationship between the amount of annotated synthetic data and model performance.</p><p><strong>Results: </strong>The proposed methodology demonstrates significant potential in extracting named entities from real-world medical texts. Our top-performing setup achieved an F<sub>1</sub>-score of 0.69 for drug extraction and 0.38 for procedure extraction. These results indicate a strong performance in recognizing certain entity types while highlighting the complexity of extracting procedures.</p><p><strong>Conclusions: </strong>This paper demonstrates a successful approach to leveraging LLMs for training NER models using synthetic data, effectively preserving patient privacy. By avoiding reliance on human-annotated data, our method shows promise in developing models for low-resource languages, such as Estonian. Future work will focus on refining the synthetic data generation and expanding the method's applicability to other domains and languages.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e66279"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/66279","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Named entity recognition (NER) plays a vital role in extracting critical medical entities from health care records, facilitating applications such as clinical decision support and data mining. Developing robust NER models for low-resource languages, such as Estonian, remains a challenge due to the scarcity of annotated data and domain-specific pretrained models. Large language models (LLMs) have proven to be promising in understanding text from any language or domain.
Objective: This study addresses the development of medical NER models for low-resource languages, specifically Estonian. We propose a novel approach by generating synthetic health care data and using LLMs to annotate them. These synthetic data are then used to train a high-performing NER model, which is applied to real-world medical texts, preserving patient data privacy.
Methods: Our approach to overcoming the shortage of annotated Estonian health care texts involves a three-step pipeline: (1) synthetic health care data are generated using a locally trained GPT-2 model on Estonian medical records, (2) the synthetic data are annotated with LLMs, specifically GPT-3.5-Turbo and GPT-4, and (3) the annotated synthetic data are then used to fine-tune an NER model, which is later tested on real-world medical data. This paper compares the performance of different prompts; assesses the impact of GPT-3.5-Turbo, GPT-4, and a local LLM; and explores the relationship between the amount of annotated synthetic data and model performance.
Results: The proposed methodology demonstrates significant potential in extracting named entities from real-world medical texts. Our top-performing setup achieved an F1-score of 0.69 for drug extraction and 0.38 for procedure extraction. These results indicate a strong performance in recognizing certain entity types while highlighting the complexity of extracting procedures.
Conclusions: This paper demonstrates a successful approach to leveraging LLMs for training NER models using synthetic data, effectively preserving patient privacy. By avoiding reliance on human-annotated data, our method shows promise in developing models for low-resource languages, such as Estonian. Future work will focus on refining the synthetic data generation and expanding the method's applicability to other domains and languages.
期刊介绍:
The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades.
As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor.
Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.