Using Synthetic Health Care Data to Leverage Large Language Models for Named Entity Recognition: Development and Validation Study.

IF 5.8 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Hendrik Šuvalov, Mihkel Lepson, Veronika Kukk, Maria Malk, Neeme Ilves, Hele-Andra Kuulmets, Raivo Kolde
{"title":"Using Synthetic Health Care Data to Leverage Large Language Models for Named Entity Recognition: Development and Validation Study.","authors":"Hendrik Šuvalov, Mihkel Lepson, Veronika Kukk, Maria Malk, Neeme Ilves, Hele-Andra Kuulmets, Raivo Kolde","doi":"10.2196/66279","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Named entity recognition (NER) plays a vital role in extracting critical medical entities from health care records, facilitating applications such as clinical decision support and data mining. Developing robust NER models for low-resource languages, such as Estonian, remains a challenge due to the scarcity of annotated data and domain-specific pretrained models. Large language models (LLMs) have proven to be promising in understanding text from any language or domain.</p><p><strong>Objective: </strong>This study addresses the development of medical NER models for low-resource languages, specifically Estonian. We propose a novel approach by generating synthetic health care data and using LLMs to annotate them. These synthetic data are then used to train a high-performing NER model, which is applied to real-world medical texts, preserving patient data privacy.</p><p><strong>Methods: </strong>Our approach to overcoming the shortage of annotated Estonian health care texts involves a three-step pipeline: (1) synthetic health care data are generated using a locally trained GPT-2 model on Estonian medical records, (2) the synthetic data are annotated with LLMs, specifically GPT-3.5-Turbo and GPT-4, and (3) the annotated synthetic data are then used to fine-tune an NER model, which is later tested on real-world medical data. This paper compares the performance of different prompts; assesses the impact of GPT-3.5-Turbo, GPT-4, and a local LLM; and explores the relationship between the amount of annotated synthetic data and model performance.</p><p><strong>Results: </strong>The proposed methodology demonstrates significant potential in extracting named entities from real-world medical texts. Our top-performing setup achieved an F<sub>1</sub>-score of 0.69 for drug extraction and 0.38 for procedure extraction. These results indicate a strong performance in recognizing certain entity types while highlighting the complexity of extracting procedures.</p><p><strong>Conclusions: </strong>This paper demonstrates a successful approach to leveraging LLMs for training NER models using synthetic data, effectively preserving patient privacy. By avoiding reliance on human-annotated data, our method shows promise in developing models for low-resource languages, such as Estonian. Future work will focus on refining the synthetic data generation and expanding the method's applicability to other domains and languages.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e66279"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/66279","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Named entity recognition (NER) plays a vital role in extracting critical medical entities from health care records, facilitating applications such as clinical decision support and data mining. Developing robust NER models for low-resource languages, such as Estonian, remains a challenge due to the scarcity of annotated data and domain-specific pretrained models. Large language models (LLMs) have proven to be promising in understanding text from any language or domain.

Objective: This study addresses the development of medical NER models for low-resource languages, specifically Estonian. We propose a novel approach by generating synthetic health care data and using LLMs to annotate them. These synthetic data are then used to train a high-performing NER model, which is applied to real-world medical texts, preserving patient data privacy.

Methods: Our approach to overcoming the shortage of annotated Estonian health care texts involves a three-step pipeline: (1) synthetic health care data are generated using a locally trained GPT-2 model on Estonian medical records, (2) the synthetic data are annotated with LLMs, specifically GPT-3.5-Turbo and GPT-4, and (3) the annotated synthetic data are then used to fine-tune an NER model, which is later tested on real-world medical data. This paper compares the performance of different prompts; assesses the impact of GPT-3.5-Turbo, GPT-4, and a local LLM; and explores the relationship between the amount of annotated synthetic data and model performance.

Results: The proposed methodology demonstrates significant potential in extracting named entities from real-world medical texts. Our top-performing setup achieved an F1-score of 0.69 for drug extraction and 0.38 for procedure extraction. These results indicate a strong performance in recognizing certain entity types while highlighting the complexity of extracting procedures.

Conclusions: This paper demonstrates a successful approach to leveraging LLMs for training NER models using synthetic data, effectively preserving patient privacy. By avoiding reliance on human-annotated data, our method shows promise in developing models for low-resource languages, such as Estonian. Future work will focus on refining the synthetic data generation and expanding the method's applicability to other domains and languages.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.40
自引率
5.40%
发文量
654
审稿时长
1 months
期刊介绍: The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades. As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor. Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信