Radiation damage and recovery of plastic scintillators under ultra-high dose rate 200 MeV electrons at CERN CLEAR facility.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Cloé Giguère, Alexander Hart, Joseph Bateman, Pierre Korysko, Wilfrid Farabolini, Yoan LeChasseur, Magdalena Bazalova-Carter, Luc Beaulieu
{"title":"Radiation damage and recovery of plastic scintillators under ultra-high dose rate 200 MeV electrons at CERN CLEAR facility.","authors":"Cloé Giguère, Alexander Hart, Joseph Bateman, Pierre Korysko, Wilfrid Farabolini, Yoan LeChasseur, Magdalena Bazalova-Carter, Luc Beaulieu","doi":"10.1088/1361-6560/adc234","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>The FLASH effect holds significant potential in improving radiotherapy treatment outcomes. Very high energy electrons (VHEEs) with energies in the range of 50-250 MeV can effectively target tumors deep in the body and can be accelerated to achieve ultra-high dose rates (UHDR), making them a promising modality for delivering FLASH radiotherapy in the clinic. However, apart from suitable VHEE sources, clinical translation requires accurate dosimetry, which is challenging due to the limitation of standard dosimeters under UHDR conditions. In this study, water-equivalent and real-time plastic scintillation dosimeters (PSDs) are tested to evaluate their viability for FLASH VHEE dosimetry.<i>Approach.</i>A 4-channel PSD, consisting of polystyrene-based BCF12 and Medscint proprietary scintillators, polyvinyltoluene-based EJ-212 and a blank plastic fiber channel for Cherenkov subtraction was exposed to the 200 MeV VHEE UHDR beam at the CLEAR CERN facility. The Hyperscint RP200 platform was used to assess linearity to dose pulses of up to 90 Gy and dose rates up to4.6×109Gy s<sup>-1</sup>, and to investigate radiation damage and recovery after dose accumulation of 37.2 kGy.<i>Main</i><i>results.</i>While blank fiber response was linear across the entire dose range studied, light output saturated above 45 Gy/pulse for scintillators. Despite radiation damage, linearity was preserved, though it resulted in a decrease of scintillator and blank fiber light output of<1.87%/kGy and a shift in spectra towards longer wavelengths. Short-term recovery (<100 h) of these changes was observed and depended on rest duration and accumulated dose. After long-term rest (<172 days), light output recovery was partial, with 6%-22% of residual permanent damage remaining, while spectral recovery was complete.<i>Significance.</i>We showed that PSDs are sensitive to radiation damage, but maintain dose linearity even after a total accumulated dose of 37.2 kGy, and exhibit significant response recovery. This work highlights the potential of PSDs for dosimetry in UHDR conditions.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adc234","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.The FLASH effect holds significant potential in improving radiotherapy treatment outcomes. Very high energy electrons (VHEEs) with energies in the range of 50-250 MeV can effectively target tumors deep in the body and can be accelerated to achieve ultra-high dose rates (UHDR), making them a promising modality for delivering FLASH radiotherapy in the clinic. However, apart from suitable VHEE sources, clinical translation requires accurate dosimetry, which is challenging due to the limitation of standard dosimeters under UHDR conditions. In this study, water-equivalent and real-time plastic scintillation dosimeters (PSDs) are tested to evaluate their viability for FLASH VHEE dosimetry.Approach.A 4-channel PSD, consisting of polystyrene-based BCF12 and Medscint proprietary scintillators, polyvinyltoluene-based EJ-212 and a blank plastic fiber channel for Cherenkov subtraction was exposed to the 200 MeV VHEE UHDR beam at the CLEAR CERN facility. The Hyperscint RP200 platform was used to assess linearity to dose pulses of up to 90 Gy and dose rates up to4.6×109Gy s-1, and to investigate radiation damage and recovery after dose accumulation of 37.2 kGy.Mainresults.While blank fiber response was linear across the entire dose range studied, light output saturated above 45 Gy/pulse for scintillators. Despite radiation damage, linearity was preserved, though it resulted in a decrease of scintillator and blank fiber light output of<1.87%/kGy and a shift in spectra towards longer wavelengths. Short-term recovery (<100 h) of these changes was observed and depended on rest duration and accumulated dose. After long-term rest (<172 days), light output recovery was partial, with 6%-22% of residual permanent damage remaining, while spectral recovery was complete.Significance.We showed that PSDs are sensitive to radiation damage, but maintain dose linearity even after a total accumulated dose of 37.2 kGy, and exhibit significant response recovery. This work highlights the potential of PSDs for dosimetry in UHDR conditions.

欧洲核子研究中心(CERN) CLEAR设施中200兆电子超高剂量率下塑料闪烁体的辐射损伤与恢复。
背景:FLASH效应在改善放射治疗结果方面具有显著的潜力。能量在50-250 MeV范围内的甚高能电子(VHEEs)可以有效地靶向体内深部肿瘤,并且可以加速达到超高剂量率(UHDR),使其成为在临床中提供FLASH放疗的一种有前途的方式。然而,除了合适的VHEE来源外,临床翻译还需要精确的剂量测定,由于标准剂量计在UHDR条件下的局限性,这是具有挑战性的。水当量和实时塑料闪烁剂量计(psd)可能提供一个可行的解决方案。目的与方法:在本研究中,在CLEAR CERN设施中,将一个由聚苯乙烯基BCF12和Medscint专有闪烁体、聚氯乙烯(PVT)基EJ-212和用于切伦科夫减法的空白塑料纤维通道组成的4通道PSD暴露于200 MeV VHEE UHDR光束下。Hyperscint RP200平台用于评估高达90 Gy的剂量脉冲和高达4.6×109Gy/s的剂量率的线性,并研究37.2 kGy剂量累积后的辐射损伤和恢复。结果:空白光纤响应在整个剂量范围内呈线性,而闪烁体的光输出在45 Gy/脉冲以上饱和。尽管受到辐射损伤,但线性度保持不变,但会导致闪烁体和空白光纤输出减少
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信