Fangfang Zhu, Honghong Su, Ji Ding, Qichao Niu, Qi Zhao, Jianwei Shuai
{"title":"SAEF: Secure Anonymization and Encryption Framework for Open-Access Remote Photoplethysmography Datasets.","authors":"Fangfang Zhu, Honghong Su, Ji Ding, Qichao Niu, Qi Zhao, Jianwei Shuai","doi":"10.1109/JBHI.2025.3552455","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of remote photoplethys-mography (rPPG) technology depends on the availability of comprehensive datasets. However, the reliance on facial features for rPPG signal acquisition poses significant privacy concerns, hindering the development of open-access datasets. This work establishes privacy protection principles for rPPG datasets and introduces the secure anonymization and encryption framework (SAEF) to address these challenges while preserving rPPG data integrity. SAEF first identifies privacy-sensitive facial regions for removal through importance and necessity analysis. The irreversible removal of these regions has an insignificant impact on signal quality, with an R-value deviation of less than 0.06 for BVP extraction and a mean absolute error (MAE) deviation of less than 0.05 for heart rate (HR) calculation. Additionally, SAEF introduces a high efficiency cascade key encryption method (CKEM), achieving encryption in 5.54 × 10<sup>-5</sup> seconds per frame, which is over three orders of magnitude faster than other methods, and reducing approximate point correlation (APC) values to below 0.005, approaching complete randomness. These advancements significantly improve real-time video encryption performance and security. Finally, SAEF serves as a preprocessing tool for generating volunteer-friendly, open-access rPPG datasets.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3552455","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of remote photoplethys-mography (rPPG) technology depends on the availability of comprehensive datasets. However, the reliance on facial features for rPPG signal acquisition poses significant privacy concerns, hindering the development of open-access datasets. This work establishes privacy protection principles for rPPG datasets and introduces the secure anonymization and encryption framework (SAEF) to address these challenges while preserving rPPG data integrity. SAEF first identifies privacy-sensitive facial regions for removal through importance and necessity analysis. The irreversible removal of these regions has an insignificant impact on signal quality, with an R-value deviation of less than 0.06 for BVP extraction and a mean absolute error (MAE) deviation of less than 0.05 for heart rate (HR) calculation. Additionally, SAEF introduces a high efficiency cascade key encryption method (CKEM), achieving encryption in 5.54 × 10-5 seconds per frame, which is over three orders of magnitude faster than other methods, and reducing approximate point correlation (APC) values to below 0.005, approaching complete randomness. These advancements significantly improve real-time video encryption performance and security. Finally, SAEF serves as a preprocessing tool for generating volunteer-friendly, open-access rPPG datasets.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.