Local-Global Structure-Aware Geometric Equivariant Graph Representation Learning for Predicting Protein-Ligand Binding Affinity.

IF 10.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shihong Chen, Haicheng Yi, Zhuhong You, Xuequn Shang, Yu-An Huang, Lei Wang, Zhen Wang
{"title":"Local-Global Structure-Aware Geometric Equivariant Graph Representation Learning for Predicting Protein-Ligand Binding Affinity.","authors":"Shihong Chen, Haicheng Yi, Zhuhong You, Xuequn Shang, Yu-An Huang, Lei Wang, Zhen Wang","doi":"10.1109/TNNLS.2025.3547300","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting protein-ligand binding affinities is a critical problem in drug discovery and design. A majority of existing methods fail to accurately characterize and exploit the geometrically invariant structures of protein-ligand complexes for predicting binding affinities. In this study, we propose Geo-protein-ligand binding affinity (PLA), a geometric equivariant graph representation learning framework with local-global structure awareness, to predict binding affinity by capturing the geometric information of protein-ligand complexes. Specifically, the local structural information of 3-D protein-ligand complexes is extracted by using an equivariant graph neural network (EGNN), which iteratively updates node representations while preserving the equivariance of coordinate transformations. Meanwhile, a graph transformer is utilized to capture long-range interactions among atoms, offering a global view that adaptively focuses on complex regions with a significant impact on binding affinities. Furthermore, the multiscale information from the two channels is integrated to enhance the predictive capability of the model. Extensive experimental studies on two benchmark datasets confirm the superior performance of Geo-PLA. Moreover, the visual interpretation of the learned protein-ligand complexes further indicates that our model offers valuable biological insights for virtual screening and drug repositioning.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2025.3547300","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting protein-ligand binding affinities is a critical problem in drug discovery and design. A majority of existing methods fail to accurately characterize and exploit the geometrically invariant structures of protein-ligand complexes for predicting binding affinities. In this study, we propose Geo-protein-ligand binding affinity (PLA), a geometric equivariant graph representation learning framework with local-global structure awareness, to predict binding affinity by capturing the geometric information of protein-ligand complexes. Specifically, the local structural information of 3-D protein-ligand complexes is extracted by using an equivariant graph neural network (EGNN), which iteratively updates node representations while preserving the equivariance of coordinate transformations. Meanwhile, a graph transformer is utilized to capture long-range interactions among atoms, offering a global view that adaptively focuses on complex regions with a significant impact on binding affinities. Furthermore, the multiscale information from the two channels is integrated to enhance the predictive capability of the model. Extensive experimental studies on two benchmark datasets confirm the superior performance of Geo-PLA. Moreover, the visual interpretation of the learned protein-ligand complexes further indicates that our model offers valuable biological insights for virtual screening and drug repositioning.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信