Simon Ullrich, Iliya Nadelson, Stefan Krebs, Helmut Blum, Heinrich Leonhardt, Irina Solovei
{"title":"Co-transcriptional splicing is delayed in the highly expressed thyroglobulin gene.","authors":"Simon Ullrich, Iliya Nadelson, Stefan Krebs, Helmut Blum, Heinrich Leonhardt, Irina Solovei","doi":"10.1242/jcs.263872","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription of the majority of eukaryotic genes is accompanied by splicing. The timing of splicing varies significantly between introns, transcripts, genes and species. Although quick co-transcriptional intron removal has been demonstrated for many mammalian genes, most splicing events do not occur immediately after intron synthesis. In this study, we utilized the highly expressed Tg gene, which forms exceptionally long transcription loops, providing a convenient model for studying splicing dynamics using advanced light microscopy. Using single-cell oligopainting, we observed a splicing delay occurring several tens of kilobases downstream of a transcribed intron, a finding supported by standard cell population analyses. We speculate that this phenomenon is due to the abnormally high transcriptional rate of the Tg gene, which might lead to a localized deficiency in splicing factors and, consequently, delayed spliceosome assembly on thousands of nascent transcripts decorating the gene. Additionally, we found that, in contrast to what is seen for short introns (<10 kb), the long Tg intron (>50 kb) is spliced promptly, providing further support for the idea that intron length might modulate splicing speed.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"138 6","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263872","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transcription of the majority of eukaryotic genes is accompanied by splicing. The timing of splicing varies significantly between introns, transcripts, genes and species. Although quick co-transcriptional intron removal has been demonstrated for many mammalian genes, most splicing events do not occur immediately after intron synthesis. In this study, we utilized the highly expressed Tg gene, which forms exceptionally long transcription loops, providing a convenient model for studying splicing dynamics using advanced light microscopy. Using single-cell oligopainting, we observed a splicing delay occurring several tens of kilobases downstream of a transcribed intron, a finding supported by standard cell population analyses. We speculate that this phenomenon is due to the abnormally high transcriptional rate of the Tg gene, which might lead to a localized deficiency in splicing factors and, consequently, delayed spliceosome assembly on thousands of nascent transcripts decorating the gene. Additionally, we found that, in contrast to what is seen for short introns (<10 kb), the long Tg intron (>50 kb) is spliced promptly, providing further support for the idea that intron length might modulate splicing speed.