A Novel Fusion and Feature Selection Framework for Multisource Time-Series Data Based on Information Entropy.

IF 10.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiuwei Chen, Li Lai, Maokang Luo
{"title":"A Novel Fusion and Feature Selection Framework for Multisource Time-Series Data Based on Information Entropy.","authors":"Xiuwei Chen, Li Lai, Maokang Luo","doi":"10.1109/TNNLS.2025.3548165","DOIUrl":null,"url":null,"abstract":"<p><p>Information technology growth brings vast time-series data. Despite richness, challenges like redundancy emphasize the need for time-series data fusion research. Rough set theory, a valuable tool for dealing with uncertainty, can identify features and reduce dimensionality, enhancing time-series data fusion. The contribution of the study lies in establishing a fusion and feature selection framework for multisource time-series data. This framework selects optimal information sources by minimizing entropy. In addition, the fusion process integrates a feature selection algorithm to eliminate redundant features, preventing a sequential increase in entropy. Crucial experiments on abundant datasets demonstrate that the proposed approach outperforms several state-of-the-art algorithms in terms of enhancing the accuracy of common classifiers. This research significantly advances the field of time-series data fusion in rough set theory, offering improved accuracy and efficiency in data processing and analysis.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2025.3548165","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Information technology growth brings vast time-series data. Despite richness, challenges like redundancy emphasize the need for time-series data fusion research. Rough set theory, a valuable tool for dealing with uncertainty, can identify features and reduce dimensionality, enhancing time-series data fusion. The contribution of the study lies in establishing a fusion and feature selection framework for multisource time-series data. This framework selects optimal information sources by minimizing entropy. In addition, the fusion process integrates a feature selection algorithm to eliminate redundant features, preventing a sequential increase in entropy. Crucial experiments on abundant datasets demonstrate that the proposed approach outperforms several state-of-the-art algorithms in terms of enhancing the accuracy of common classifiers. This research significantly advances the field of time-series data fusion in rough set theory, offering improved accuracy and efficiency in data processing and analysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信