Inhibition of neutrophil extracellular traps alleviates blood-brain barrier disruption and cognitive dysfunction via Wnt3/β-catenin/TCF4 signaling in sepsis-associated encephalopathy.

IF 9.3 1区 医学 Q1 IMMUNOLOGY
Jianhe Yue, Lijuan Mo, Guotao Zeng, Ping Ma, Xiaolin Zhang, Yuhang Peng, Xiang Zhang, You Zhou, Yongxiang Jiang, Ning Huang, Yuan Cheng
{"title":"Inhibition of neutrophil extracellular traps alleviates blood-brain barrier disruption and cognitive dysfunction via Wnt3/β-catenin/TCF4 signaling in sepsis-associated encephalopathy.","authors":"Jianhe Yue, Lijuan Mo, Guotao Zeng, Ping Ma, Xiaolin Zhang, Yuhang Peng, Xiang Zhang, You Zhou, Yongxiang Jiang, Ning Huang, Yuan Cheng","doi":"10.1186/s12974-025-03395-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neutrophils and neutrophil extracellular traps (NETs) have been identified as crucial contributors in several neuroinflammatory models, such as stroke and traumatic brain injury, but their role in sepsis-associated encephalopathy (SAE) has not been thoroughly investigated.</p><p><strong>Methods: </strong>In this study, we established an SAE model using cecal ligation puncture (CLP) surgery to examine neutrophil infiltration and NETs formation. A protein arginine deiminase 4 (PAD4) inhibitor, GSK484, was employed to suppress NETs release. To assess changes in hippocampal gene expression induced by GSK484 treatment in CLP mice, we utilized RNA sequencing (RNA-Seq) combined with bioinformatics analysis. Additionally, the Elisa, cognitive function test, western bolt and immunofluorescence staining were used to measured hippocampal inflammatory cytokine, cognitive function, and the protein levels of tight junctions (TJs) and adherens junctions (AJs) in SAE mice. We also established a Transwell™ co-culture system using bEnd.3 cells and bone marrow-derived neutrophils to examine the effects of GSK484 on endothelial cell function. This comprehensive approach allowed us to evaluate the impact of NETs inhibition on neuroinflammation, cognitive function, and the underlying molecular mechanisms in the CLP-induced SAE model.</p><p><strong>Results: </strong>Our findings revealed that neutrophils were significantly overactivated, releasing abundant NETs in the hippocampus of CLP-induced SAE mice. Inhibition of NET formation using GSK484 led to reduced neuroinflammatory responses, improved blood-brain barrier (BBB) integrity, and enhanced survival rates and cognitive function in SAE mice. RNA-Seq and bioinformatics analyses identified the Wnt signaling pathway as the most significant pathway affected. Subsequent experiments demonstrated that NETs inhibition alleviated BBB damage primarily by increasing the expression of Occludin, a TJs protein, and promoting the formation of the VCL/β-catenin/VE-cadherin complex at AJs, mediated by the Wnt3/β-catenin/TCF4 signaling pathway.</p><p><strong>Conclusions: </strong>Our results suggest that inhibition of NETs may protect BBB permeability and cognitive function through the Wnt3/β-catenin/TCF4 signaling pathway in the context of CLP-induced SAE, which provides a promising strategy for SAE therapy.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"87"},"PeriodicalIF":9.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03395-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Neutrophils and neutrophil extracellular traps (NETs) have been identified as crucial contributors in several neuroinflammatory models, such as stroke and traumatic brain injury, but their role in sepsis-associated encephalopathy (SAE) has not been thoroughly investigated.

Methods: In this study, we established an SAE model using cecal ligation puncture (CLP) surgery to examine neutrophil infiltration and NETs formation. A protein arginine deiminase 4 (PAD4) inhibitor, GSK484, was employed to suppress NETs release. To assess changes in hippocampal gene expression induced by GSK484 treatment in CLP mice, we utilized RNA sequencing (RNA-Seq) combined with bioinformatics analysis. Additionally, the Elisa, cognitive function test, western bolt and immunofluorescence staining were used to measured hippocampal inflammatory cytokine, cognitive function, and the protein levels of tight junctions (TJs) and adherens junctions (AJs) in SAE mice. We also established a Transwell™ co-culture system using bEnd.3 cells and bone marrow-derived neutrophils to examine the effects of GSK484 on endothelial cell function. This comprehensive approach allowed us to evaluate the impact of NETs inhibition on neuroinflammation, cognitive function, and the underlying molecular mechanisms in the CLP-induced SAE model.

Results: Our findings revealed that neutrophils were significantly overactivated, releasing abundant NETs in the hippocampus of CLP-induced SAE mice. Inhibition of NET formation using GSK484 led to reduced neuroinflammatory responses, improved blood-brain barrier (BBB) integrity, and enhanced survival rates and cognitive function in SAE mice. RNA-Seq and bioinformatics analyses identified the Wnt signaling pathway as the most significant pathway affected. Subsequent experiments demonstrated that NETs inhibition alleviated BBB damage primarily by increasing the expression of Occludin, a TJs protein, and promoting the formation of the VCL/β-catenin/VE-cadherin complex at AJs, mediated by the Wnt3/β-catenin/TCF4 signaling pathway.

Conclusions: Our results suggest that inhibition of NETs may protect BBB permeability and cognitive function through the Wnt3/β-catenin/TCF4 signaling pathway in the context of CLP-induced SAE, which provides a promising strategy for SAE therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信