Enhanced neural speech tracking through noise indicates stochastic resonance in humans.

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2025-03-18 DOI:10.7554/eLife.100830
Björn Herrmann
{"title":"Enhanced neural speech tracking through noise indicates stochastic resonance in humans.","authors":"Björn Herrmann","doi":"10.7554/eLife.100830","DOIUrl":null,"url":null,"abstract":"<p><p>Neural activity in auditory cortex tracks the amplitude-onset envelope of continuous speech, but recent work counterintuitively suggests that neural tracking increases when speech is masked by background noise, despite reduced speech intelligibility. Noise-related amplification could indicate that stochastic resonance - the response facilitation through noise - supports neural speech tracking, but a comprehensive account is lacking. In five human electroencephalography experiments, the current study demonstrates a generalized enhancement of neural speech tracking due to minimal background noise. Results show that (1) neural speech tracking is enhanced for speech masked by background noise at very high signal-to-noise ratios (~30 dB SNR) where speech is highly intelligible; (2) this enhancement is independent of attention; (3) it generalizes across different stationary background maskers, but is strongest for 12-talker babble; and (4) it is present for headphone and free-field listening, suggesting that the neural-tracking enhancement generalizes to real-life listening. The work paints a clear picture that minimal background noise enhances the neural representation of the speech onset-envelope, suggesting that stochastic resonance contributes to neural speech tracking. The work further highlights non-linearities of neural tracking induced by background noise that make its use as a biological marker for speech processing challenging.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919254/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.100830","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neural activity in auditory cortex tracks the amplitude-onset envelope of continuous speech, but recent work counterintuitively suggests that neural tracking increases when speech is masked by background noise, despite reduced speech intelligibility. Noise-related amplification could indicate that stochastic resonance - the response facilitation through noise - supports neural speech tracking, but a comprehensive account is lacking. In five human electroencephalography experiments, the current study demonstrates a generalized enhancement of neural speech tracking due to minimal background noise. Results show that (1) neural speech tracking is enhanced for speech masked by background noise at very high signal-to-noise ratios (~30 dB SNR) where speech is highly intelligible; (2) this enhancement is independent of attention; (3) it generalizes across different stationary background maskers, but is strongest for 12-talker babble; and (4) it is present for headphone and free-field listening, suggesting that the neural-tracking enhancement generalizes to real-life listening. The work paints a clear picture that minimal background noise enhances the neural representation of the speech onset-envelope, suggesting that stochastic resonance contributes to neural speech tracking. The work further highlights non-linearities of neural tracking induced by background noise that make its use as a biological marker for speech processing challenging.

求助全文
约1分钟内获得全文 求助全文
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信