Robot-Assisted Stereotactic Microinjection Method for Precision Cell Transplantation in Rat and Canine Models.

IF 3.2 4区 医学 Q3 CELL & TISSUE ENGINEERING
Cell Transplantation Pub Date : 2025-01-01 Epub Date: 2025-03-18 DOI:10.1177/09636897251323351
Deqiang Han, Sichang Chen, Yuan Wang, Xueyao Wang, Xingzhe Wang, Tianqi Zheng, Zhiguo Chen
{"title":"Robot-Assisted Stereotactic Microinjection Method for Precision Cell Transplantation in Rat and Canine Models.","authors":"Deqiang Han, Sichang Chen, Yuan Wang, Xueyao Wang, Xingzhe Wang, Tianqi Zheng, Zhiguo Chen","doi":"10.1177/09636897251323351","DOIUrl":null,"url":null,"abstract":"<p><p>Cell transplantation is a promising approach for addressing neurodegenerative conditions. In this study, we developed a robot-assisted stereotactic microinjection system for transplanting cells. We evaluated the factors that affect cellular graft viability and other properties, including the gauge of the syringe needle and the injection rate. We systematically compared the synchronous withdrawal injection (SWI) and fixed-point injection (FPI) procedures in agarose and rat brain models. <i>In vitro</i> assessments revealed superior dye dispersion with SWI compared to FPI, and <i>in vivo</i> analyses confirmed that SWI reduced the tissue injury and improved cell distribution in the striatum. We applied this robot-assisted technique to evaluate the accuracy and safety of cell transplantation in canine models. Overall, this strategy enhances the accuracy and safety of graft delivery, potentially improving outcomes and advancing therapeutic strategies for the clinical treatment of neurodegenerative disorders.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"34 ","pages":"9636897251323351"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924096/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09636897251323351","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Cell transplantation is a promising approach for addressing neurodegenerative conditions. In this study, we developed a robot-assisted stereotactic microinjection system for transplanting cells. We evaluated the factors that affect cellular graft viability and other properties, including the gauge of the syringe needle and the injection rate. We systematically compared the synchronous withdrawal injection (SWI) and fixed-point injection (FPI) procedures in agarose and rat brain models. In vitro assessments revealed superior dye dispersion with SWI compared to FPI, and in vivo analyses confirmed that SWI reduced the tissue injury and improved cell distribution in the striatum. We applied this robot-assisted technique to evaluate the accuracy and safety of cell transplantation in canine models. Overall, this strategy enhances the accuracy and safety of graft delivery, potentially improving outcomes and advancing therapeutic strategies for the clinical treatment of neurodegenerative disorders.

机器人辅助立体定向显微注射方法用于大鼠和犬模型的精确细胞移植。
细胞移植是治疗神经退行性疾病的一种很有前途的方法。在这项研究中,我们开发了一种机器人辅助立体定向显微注射系统用于移植细胞。我们评估了影响细胞移植物活力和其他特性的因素,包括注射器针头的规格和注射速度。我们系统地比较了琼脂糖和大鼠脑模型的同步戒断注射(SWI)和定点注射(FPI)方法。体外评估显示,与FPI相比,SWI具有更好的染料分散性,体内分析证实SWI减少了组织损伤并改善了纹状体中的细胞分布。我们应用这种机器人辅助技术来评估犬模型细胞移植的准确性和安全性。总的来说,这种策略提高了移植物输送的准确性和安全性,潜在地改善了结果,并推进了神经退行性疾病的临床治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Transplantation
Cell Transplantation 生物-细胞与组织工程
CiteScore
6.00
自引率
3.00%
发文量
97
审稿时长
6 months
期刊介绍: Cell Transplantation, The Regenerative Medicine Journal is an open access, peer reviewed journal that is published 12 times annually. Cell Transplantation is a multi-disciplinary forum for publication of articles on cell transplantation and its applications to human diseases. Articles focus on a myriad of topics including the physiological, medical, pre-clinical, tissue engineering, stem cell, and device-oriented aspects of the nervous, endocrine, cardiovascular, and endothelial systems, as well as genetically engineered cells. Cell Transplantation also reports on relevant technological advances, clinical studies, and regulatory considerations related to the implantation of cells into the body in order to provide complete coverage of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信