From images to clinical insights: an educational review on radiomics in lung diseases.

IF 2.3 Q2 RESPIRATORY SYSTEM
Breathe Pub Date : 2025-03-18 eCollection Date: 2025-01-01 DOI:10.1183/20734735.0225-2023
Cheryl Y Magnin, David Lauer, Michael Ammeter, Janine Gote-Schniering
{"title":"From images to clinical insights: an educational review on radiomics in lung diseases.","authors":"Cheryl Y Magnin, David Lauer, Michael Ammeter, Janine Gote-Schniering","doi":"10.1183/20734735.0225-2023","DOIUrl":null,"url":null,"abstract":"<p><p>Radiological imaging is a cornerstone in the clinical workup of lung diseases. Radiomics represents a significant advancement in clinical lung imaging, offering a powerful tool to complement traditional qualitative image analysis. Radiomic features are quantitative and computationally describe shape, intensity, texture and wavelet characteristics from medical images that can uncover detailed and often subtle information that goes beyond the visual capabilities of radiological examiners. By extracting this quantitative information, radiomics can provide deep insights into the pathophysiology of lung diseases and support clinical decision-making as well as personalised medicine approaches. In this educational review, we provide a step-by-step guide to radiomics-based medical image analysis, discussing the technical challenges and pitfalls, and outline the potential clinical applications of radiomics in diagnosing, prognosticating and evaluating treatment responses in respiratory medicine.</p>","PeriodicalId":9292,"journal":{"name":"Breathe","volume":"21 1","pages":"230225"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915127/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breathe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1183/20734735.0225-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Radiological imaging is a cornerstone in the clinical workup of lung diseases. Radiomics represents a significant advancement in clinical lung imaging, offering a powerful tool to complement traditional qualitative image analysis. Radiomic features are quantitative and computationally describe shape, intensity, texture and wavelet characteristics from medical images that can uncover detailed and often subtle information that goes beyond the visual capabilities of radiological examiners. By extracting this quantitative information, radiomics can provide deep insights into the pathophysiology of lung diseases and support clinical decision-making as well as personalised medicine approaches. In this educational review, we provide a step-by-step guide to radiomics-based medical image analysis, discussing the technical challenges and pitfalls, and outline the potential clinical applications of radiomics in diagnosing, prognosticating and evaluating treatment responses in respiratory medicine.

从影像到临床洞察:肺部疾病放射组学的教育综述。
放射影像是肺部疾病临床检查的基础。放射组学代表了临床肺部成像的重大进步,为补充传统的定性图像分析提供了强大的工具。放射学特征是定量的,通过计算来描述医学图像的形状、强度、纹理和小波特征,这些特征可以揭示超出放射检查人员视觉能力的细节和通常是微妙的信息。通过提取这些定量信息,放射组学可以为肺部疾病的病理生理学提供深入的见解,并支持临床决策以及个性化医疗方法。在这篇教育综述中,我们提供了基于放射组学的医学图像分析的逐步指南,讨论了技术挑战和陷阱,并概述了放射组学在呼吸医学诊断、预后和评估治疗反应方面的潜在临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Breathe
Breathe RESPIRATORY SYSTEM-
CiteScore
2.90
自引率
5.00%
发文量
51
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信