Deep learning based on intratumoral heterogeneity predicts histopathologic grade of hepatocellular carcinoma.

IF 3.4 2区 医学 Q2 ONCOLOGY
Shaoming Song, Gong Zhang, Zhiyuan Yao, Ruiqiu Chen, Kai Liu, Tianchen Zhang, Guineng Zeng, Zizheng Wang, Rong Liu
{"title":"Deep learning based on intratumoral heterogeneity predicts histopathologic grade of hepatocellular carcinoma.","authors":"Shaoming Song, Gong Zhang, Zhiyuan Yao, Ruiqiu Chen, Kai Liu, Tianchen Zhang, Guineng Zeng, Zizheng Wang, Rong Liu","doi":"10.1186/s12885-025-13781-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The potential of medical imaging to non-invasively assess intratumoral heterogeneity (ITH) is increasingly being recognized. This study aimed to investigate the value of the ITH-based deep learning model for preoperative prediction of histopathologic grade in hepatocellular carcinoma (HCC).</p><p><strong>Materials and methods: </strong>A total of 858 patients from primary cohort and two external cohorts were included. 3.0T or 1.5T axial portal venous phase MRI images were collected. We conducted radiomics feature-driven K-means clustering for automatic partition to reveal ITH. 2.5D and 3D deep learning models based on ResNet architecture were trained to extract deep learning hidden features of each subregion. The selected features were used to train Random Forest classifier, which constructed the feature-fusion model.</p><p><strong>Results: </strong>The extracted voxel-level radiomics features were unsupervised clustered by K-means to generate three subregions. In the 2.5D deep learning, the feature-fusion model based on ITH had superior predictive efficacy than the whole-tumor model (AUC: 0.82 vs. 0.72; p = 0.004). Even in the validation and external test sets, this model maintained a high AUC of 0.78-0.83, and net reclassification indices indicated that it could improve prediction by 25-28%. Regarding the prognostic value, overall survival (OS) and recurrence-free survival (RFS) could be significantly stratified by the 2.5D feature-fusion model, and multivariable Cox regressions indicated its signature was identified as a risk predictor for OS and RFS (p < 0.05).</p><p><strong>Conclusion: </strong>The ITH-based feature-fusion model provided a non-invasive method for classifying tumor differentiation in HCC, which may serve as a promising strategy for stratification management.</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":"25 1","pages":"497"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12885-025-13781-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The potential of medical imaging to non-invasively assess intratumoral heterogeneity (ITH) is increasingly being recognized. This study aimed to investigate the value of the ITH-based deep learning model for preoperative prediction of histopathologic grade in hepatocellular carcinoma (HCC).

Materials and methods: A total of 858 patients from primary cohort and two external cohorts were included. 3.0T or 1.5T axial portal venous phase MRI images were collected. We conducted radiomics feature-driven K-means clustering for automatic partition to reveal ITH. 2.5D and 3D deep learning models based on ResNet architecture were trained to extract deep learning hidden features of each subregion. The selected features were used to train Random Forest classifier, which constructed the feature-fusion model.

Results: The extracted voxel-level radiomics features were unsupervised clustered by K-means to generate three subregions. In the 2.5D deep learning, the feature-fusion model based on ITH had superior predictive efficacy than the whole-tumor model (AUC: 0.82 vs. 0.72; p = 0.004). Even in the validation and external test sets, this model maintained a high AUC of 0.78-0.83, and net reclassification indices indicated that it could improve prediction by 25-28%. Regarding the prognostic value, overall survival (OS) and recurrence-free survival (RFS) could be significantly stratified by the 2.5D feature-fusion model, and multivariable Cox regressions indicated its signature was identified as a risk predictor for OS and RFS (p < 0.05).

Conclusion: The ITH-based feature-fusion model provided a non-invasive method for classifying tumor differentiation in HCC, which may serve as a promising strategy for stratification management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Cancer
BMC Cancer 医学-肿瘤学
CiteScore
6.00
自引率
2.60%
发文量
1204
审稿时长
6.8 months
期刊介绍: BMC Cancer is an open access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信