Extracellular Vesicles and Cellular Homeostasis.

IF 12.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jordan Matthew Ngo, Justin Krish Williams, Congyan Zhang, Amr Hosny Saleh, Xiao-Man Liu, Liang Ma, Randy Schekman
{"title":"Extracellular Vesicles and Cellular Homeostasis.","authors":"Jordan Matthew Ngo, Justin Krish Williams, Congyan Zhang, Amr Hosny Saleh, Xiao-Man Liu, Liang Ma, Randy Schekman","doi":"10.1146/annurev-biochem-100924-012717","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are secreted, membrane-enclosed particles that have been proposed to play a broad role in intercellular communication. Most often, EVs, by analogy to enveloped viruses, are suggested to fuse to or within a target cell to deliver a soluble signaling molecule into the cytoplasm. However, significant evidence supports an alternative model in which EVs are secreted to promote homeostasis. In this model, EVs are loaded with unwanted or toxic cargo, secreted upon cellular or organismal stress, and degraded by other cells. Here, we present evidence supporting this homeostatic EV model and discuss the general inefficiency of EV cargo delivery. While the homeostatic and viral delivery models for EV function are not mutually exclusive, we propose that much of the evidence presented is hard to reconcile with a broad role for EVs in cargo transfer as a means to promote intercellular communication.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biochem-100924-012717","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular vesicles (EVs) are secreted, membrane-enclosed particles that have been proposed to play a broad role in intercellular communication. Most often, EVs, by analogy to enveloped viruses, are suggested to fuse to or within a target cell to deliver a soluble signaling molecule into the cytoplasm. However, significant evidence supports an alternative model in which EVs are secreted to promote homeostasis. In this model, EVs are loaded with unwanted or toxic cargo, secreted upon cellular or organismal stress, and degraded by other cells. Here, we present evidence supporting this homeostatic EV model and discuss the general inefficiency of EV cargo delivery. While the homeostatic and viral delivery models for EV function are not mutually exclusive, we propose that much of the evidence presented is hard to reconcile with a broad role for EVs in cargo transfer as a means to promote intercellular communication.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual review of biochemistry
Annual review of biochemistry 生物-生化与分子生物学
CiteScore
33.90
自引率
0.00%
发文量
31
期刊介绍: The Annual Review of Biochemistry, in publication since 1932, sets the standard for review articles in biological chemistry and molecular biology. Since its inception, these volumes have served as an indispensable resource for both the practicing biochemist and students of biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信