Multiphase sulfur chemistry facilitates particle growth in a cold and dark urban environment.

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Jingqiu Mao, Kunal Bali, James R Campbell, Ellis S Robinson, Peter F DeCarlo, Amna Ijaz, Brice Temime-Roussel, Barbara D'Anna, Damien Ketcherside, Robert J Yokelson, Lu Hu, Meeta Cesler-Maloney, William R Simpson, Fangzhou Guo, James H Flynn, Jason M St Clair, Athanasios Nenes, Rodney J Weber
{"title":"Multiphase sulfur chemistry facilitates particle growth in a cold and dark urban environment.","authors":"Jingqiu Mao, Kunal Bali, James R Campbell, Ellis S Robinson, Peter F DeCarlo, Amna Ijaz, Brice Temime-Roussel, Barbara D'Anna, Damien Ketcherside, Robert J Yokelson, Lu Hu, Meeta Cesler-Maloney, William R Simpson, Fangzhou Guo, James H Flynn, Jason M St Clair, Athanasios Nenes, Rodney J Weber","doi":"10.1039/d4fd00170b","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfate comprises an average of 20% of the ambient PM<sub>2.5</sub> mass during the winter months in Fairbanks, based on 24-hour filter measurements. During the ALPACA 2022 field campaign (Jan 15th-Feb 28th of 2022), we deployed two aerosol mass spectrometers (AMS) and one aerosol chemical speciation monitor (ACSM) at three urban sites, combined with Scanning Mobility Particle Sizers (SMPS), to examine the evolution of aerosol composition and size distribution at a sub-hourly time scale. During an intense pollution episode with ambient temperature between -25 and -35 °C, all three instruments (two AMS and one ACSM) recorded a sharp increase in sulfate mass, ranging from 5 to 40 μg m<sup>-3</sup> within a few hours. This increase contributed up to half of the observed rise in ambient PM<sub>2.5</sub> mass concentration and coincided with a substantial shift in the number distribution from particle sizes less than 100 nm diameter (<i>D</i><sub>p</sub> < 100 nm) to larger particles (<i>D</i><sub>p</sub> > 100 nm) with little increase in number concentration. The corresponding increase in the volume concentration and distribution shift to larger particle size suggests the secondary formation of sulfate and organic aerosol onto pre-existing aerosols. Comparing AMS-sulfate (all sulfur species) to inorganic sulfate measured by online particle-into-liquid sampler-ion chromatography (PILS-IC), we find roughly 80% of sulfate increase was due to organic sulfur, consistent with the observation of mass spectral signatures in the AMS of organosulfur compounds. The rapid formation of sulfate appears to coincide with spikes in ambient aldehyde concentrations (formaldehyde and acetaldehyde) and an increase in S(IV) in ambient PM<sub>2.5</sub>. This likely results from multiphase chemistry, where hydroxymethanesulfonate (HMS) and other aldehyde-S(IV) adducts are formed through reactions between aldehydes and SO<sub>2</sub> in deliquesced aerosols. We estimate that all S(IV) species, including HMS, contribute an average of 30% to aerosol sulfur, with a dominant fraction occurring during rapid sulfate increase events. Our work highlights the crucial role of controlling aldehydes to mitigate severe air pollution events in Fairbanks and may apply to other urban areas. It also emphasizes the significance of multiphase chemistry in driving particle growth from Aitken mode to accumulation mode, a key step for aerosol-cloud interactions.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00170b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfate comprises an average of 20% of the ambient PM2.5 mass during the winter months in Fairbanks, based on 24-hour filter measurements. During the ALPACA 2022 field campaign (Jan 15th-Feb 28th of 2022), we deployed two aerosol mass spectrometers (AMS) and one aerosol chemical speciation monitor (ACSM) at three urban sites, combined with Scanning Mobility Particle Sizers (SMPS), to examine the evolution of aerosol composition and size distribution at a sub-hourly time scale. During an intense pollution episode with ambient temperature between -25 and -35 °C, all three instruments (two AMS and one ACSM) recorded a sharp increase in sulfate mass, ranging from 5 to 40 μg m-3 within a few hours. This increase contributed up to half of the observed rise in ambient PM2.5 mass concentration and coincided with a substantial shift in the number distribution from particle sizes less than 100 nm diameter (Dp < 100 nm) to larger particles (Dp > 100 nm) with little increase in number concentration. The corresponding increase in the volume concentration and distribution shift to larger particle size suggests the secondary formation of sulfate and organic aerosol onto pre-existing aerosols. Comparing AMS-sulfate (all sulfur species) to inorganic sulfate measured by online particle-into-liquid sampler-ion chromatography (PILS-IC), we find roughly 80% of sulfate increase was due to organic sulfur, consistent with the observation of mass spectral signatures in the AMS of organosulfur compounds. The rapid formation of sulfate appears to coincide with spikes in ambient aldehyde concentrations (formaldehyde and acetaldehyde) and an increase in S(IV) in ambient PM2.5. This likely results from multiphase chemistry, where hydroxymethanesulfonate (HMS) and other aldehyde-S(IV) adducts are formed through reactions between aldehydes and SO2 in deliquesced aerosols. We estimate that all S(IV) species, including HMS, contribute an average of 30% to aerosol sulfur, with a dominant fraction occurring during rapid sulfate increase events. Our work highlights the crucial role of controlling aldehydes to mitigate severe air pollution events in Fairbanks and may apply to other urban areas. It also emphasizes the significance of multiphase chemistry in driving particle growth from Aitken mode to accumulation mode, a key step for aerosol-cloud interactions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信