Enhanced Retention of NTSR1-Targeted Radionuclide Therapeutics via Covalent Inhibitors in Pancreatic, Colorectal, and Prostate Cancer Models.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Wenting Zhang, Wei Fan, Katie Brake, Alireza Basiri, Megan A Hyun, Lynette M Smith, Subodh M Lele, Abhijit Aithal, Maneesh Jain, Jered C Garrison
{"title":"Enhanced Retention of NTSR1-Targeted Radionuclide Therapeutics via Covalent Inhibitors in Pancreatic, Colorectal, and Prostate Cancer Models.","authors":"Wenting Zhang, Wei Fan, Katie Brake, Alireza Basiri, Megan A Hyun, Lynette M Smith, Subodh M Lele, Abhijit Aithal, Maneesh Jain, Jered C Garrison","doi":"10.1021/acs.molpharmaceut.4c01324","DOIUrl":null,"url":null,"abstract":"<p><p>Neurotensin receptor subtype 1 (NTSR1) is overexpressed in numerous cancers. Our laboratory is exploring the utilization of covalent cysteine protease inhibitors (e.g., E-64) to increase tumor retention of targeted radionuclide therapeutics (TRTs) through protein adduct formation. Using this approach, we reported [<sup>177</sup>Lu]Lu-NA-ET1, an NTSR1-targeted construct. In this work, we continue the exploration of [<sup>177</sup>Lu]Lu-NA-ET1 in three different NTSR1-positive cancer models. [<sup>177</sup>Lu]Lu-3BP-227, a clinically investigated NTSR1-targeted construct, was utilized as a comparative benchmark. Both [<sup>177</sup>Lu]Lu-NA-ET1 and [<sup>177</sup>Lu]Lu-3BP-227 underwent in vitro investigation, including internalization and autoradiographic sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) studies, in NTSR1-positive AsPC-1, HT-29, and PC-3 cell lines. Biodistribution, human radiation dosimetry, and in vivo autoradiographic SDS-PAGE studies were performed by using the same models. A dose escalation study using 585 MBq (15.8 mCi) of [<sup>177</sup>Lu]Lu-NA-ET1 was implemented in immunocompetent CF-1 mice. In all three cell lines, [<sup>177</sup>Lu]Lu-NA-ET1 demonstrated similar cellular uptake profiles relative to those of [<sup>177</sup>Lu]Lu-3BP-227. Biodistribution studies of [<sup>177</sup>Lu]Lu-NA-ET1 revealed increased (1.9-4.4-fold) tumor retention and radiation dose delivery relative to the control. Analysis of the in vitro and in vivo cellular and tissue lysates showed protein adducts that ranged from approximately 25-35 kDa, consistent with cysteine cathepsins, the speculative protein binding partner. A total of 585 MBq (15.8 mCi) of [<sup>177</sup>Lu]Lu-NA-ET1 was administered and found to be well-tolerated. Incorporating the covalent inhibitor in [<sup>177</sup>Lu]Lu-NA-ET1 resulted in an improved retention and radiation dose delivery profile compared to [<sup>177</sup>Lu]Lu-3BP-227. Examination of the therapeutic potential of [<sup>177</sup>Lu]Lu-NA-ET1 and further exploration of the chemical biology of this approach is underway.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01324","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Neurotensin receptor subtype 1 (NTSR1) is overexpressed in numerous cancers. Our laboratory is exploring the utilization of covalent cysteine protease inhibitors (e.g., E-64) to increase tumor retention of targeted radionuclide therapeutics (TRTs) through protein adduct formation. Using this approach, we reported [177Lu]Lu-NA-ET1, an NTSR1-targeted construct. In this work, we continue the exploration of [177Lu]Lu-NA-ET1 in three different NTSR1-positive cancer models. [177Lu]Lu-3BP-227, a clinically investigated NTSR1-targeted construct, was utilized as a comparative benchmark. Both [177Lu]Lu-NA-ET1 and [177Lu]Lu-3BP-227 underwent in vitro investigation, including internalization and autoradiographic sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) studies, in NTSR1-positive AsPC-1, HT-29, and PC-3 cell lines. Biodistribution, human radiation dosimetry, and in vivo autoradiographic SDS-PAGE studies were performed by using the same models. A dose escalation study using 585 MBq (15.8 mCi) of [177Lu]Lu-NA-ET1 was implemented in immunocompetent CF-1 mice. In all three cell lines, [177Lu]Lu-NA-ET1 demonstrated similar cellular uptake profiles relative to those of [177Lu]Lu-3BP-227. Biodistribution studies of [177Lu]Lu-NA-ET1 revealed increased (1.9-4.4-fold) tumor retention and radiation dose delivery relative to the control. Analysis of the in vitro and in vivo cellular and tissue lysates showed protein adducts that ranged from approximately 25-35 kDa, consistent with cysteine cathepsins, the speculative protein binding partner. A total of 585 MBq (15.8 mCi) of [177Lu]Lu-NA-ET1 was administered and found to be well-tolerated. Incorporating the covalent inhibitor in [177Lu]Lu-NA-ET1 resulted in an improved retention and radiation dose delivery profile compared to [177Lu]Lu-3BP-227. Examination of the therapeutic potential of [177Lu]Lu-NA-ET1 and further exploration of the chemical biology of this approach is underway.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信