{"title":"Tailoring Bacterial Cellulose through the CRISPR/Cas9-Mediated Gene Editing Tool in <i>Komagataeibacter xylinus</i>.","authors":"Longhui Huang, Yiduo Zhou, Yamiao Feng, Shiru Jia, Shujun Wang, Cheng Zhong","doi":"10.1021/acssynbio.4c00785","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial cellulose (BC) is a nanocellulose produced by bacteria, formed by glucose units linked through β-1,4 glycosidic bonds. It features a three-dimensional network structure, superior water retention capacity, high porosity, and outstanding biocompatibility, among other notable characteristics. <i>Komagataeibacter xylinus</i> was the predominant strain used for BC production. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associate-protein 9)-mediated gene editing tool has been applied in various species; however, its application in <i>K. xylinus</i> has not been reported. To facilitate metabolic pathway engineering in <i>K. xylinus</i>, a CRISPR/Cas9-mediated gene editing tool specific to this strain was developed, achieving a gene editing efficiency exceeding 73%. Upon application of the CRISPR/Cas9-mediated gene editing tool in <i>K. xylinus</i>, the strain's ability to synthesize BC was enhanced by 23.6% (5.75 g/L), and the impact of BC synthase-correlated genes (<i>bcsH</i>, <i>bcsX</i>, <i>bcsY</i>, <i>and bcsZ</i>) on BC structure was investigated. The advancement of CRISPR/Cas9-mediated gene editing tools in <i>K. xylinus</i> is expected to accelerate genetic modification of this organism. This advancement has the potential to significantly improve our understanding of the genetic regulatory mechanisms that govern the structure and production of BC, thereby facilitating cost-effective synthesis of BC with tailored structural properties.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00785","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial cellulose (BC) is a nanocellulose produced by bacteria, formed by glucose units linked through β-1,4 glycosidic bonds. It features a three-dimensional network structure, superior water retention capacity, high porosity, and outstanding biocompatibility, among other notable characteristics. Komagataeibacter xylinus was the predominant strain used for BC production. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associate-protein 9)-mediated gene editing tool has been applied in various species; however, its application in K. xylinus has not been reported. To facilitate metabolic pathway engineering in K. xylinus, a CRISPR/Cas9-mediated gene editing tool specific to this strain was developed, achieving a gene editing efficiency exceeding 73%. Upon application of the CRISPR/Cas9-mediated gene editing tool in K. xylinus, the strain's ability to synthesize BC was enhanced by 23.6% (5.75 g/L), and the impact of BC synthase-correlated genes (bcsH, bcsX, bcsY, and bcsZ) on BC structure was investigated. The advancement of CRISPR/Cas9-mediated gene editing tools in K. xylinus is expected to accelerate genetic modification of this organism. This advancement has the potential to significantly improve our understanding of the genetic regulatory mechanisms that govern the structure and production of BC, thereby facilitating cost-effective synthesis of BC with tailored structural properties.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.