Prediction of the Viscosity of Saturated Liquid and Unsaturated Gaseous Chlorofluorocarbons as Well as Hydrocarbon Mixtures Using the Peng–Robinson Equation of State

IF 1.3 4区 工程技术 Q3 CHEMISTRY, ORGANIC
Yashar Tahmasbi, Mojtaba Saei Moghaddam, Mohammad Fani Kheshti
{"title":"Prediction of the Viscosity of Saturated Liquid and Unsaturated Gaseous Chlorofluorocarbons as Well as Hydrocarbon Mixtures Using the Peng–Robinson Equation of State","authors":"Yashar Tahmasbi,&nbsp;Mojtaba Saei Moghaddam,&nbsp;Mohammad Fani Kheshti","doi":"10.1134/S0965544124070132","DOIUrl":null,"url":null,"abstract":"<p>In order to determine the viscosity of liquid and gaseous chlorofluorocarbons, various experimental approaches and graphs have been developed, but they had a limited use. In this study, the viscosity of chlorofluorocarbons and hydrocarbon mixtures has been determined by applying a reliable model based n the Peng–Robinson cubic equation of state and the mixing rule for hydrocarbon mixtures. Finally, the Fminsearch algorithm has been used to optimize the result of 531 data points including 451 points for pure chlorofluorocarbons (167 points for saturated liquid chlorofluorocarbons, 284 points for unsaturated gaseous chlorofluorocarbons (R13, R32) and 80 points for binary mixtures. In this study, a large chlorofluorocarbon data set obtained for a wide pressure (3237–5805 kPa), and temperature (301.84–487.40 K) ranges has been used. The results show a similarity between the experimental data and the model results. For 17 pure chlorofluorocarbons considered in this study, the calculated average absolute deviation is 1.92%, and the average relative error for four two-component hydrocarbon mixtures is 5.28%. A difference between the predicted and the experimental viscosity for R13 and R32 was mainly 0.1. In general, the analyzed model is accurate and does not require the bulk density that represents its main advantage.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"65 1","pages":"72 - 81"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544124070132","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

In order to determine the viscosity of liquid and gaseous chlorofluorocarbons, various experimental approaches and graphs have been developed, but they had a limited use. In this study, the viscosity of chlorofluorocarbons and hydrocarbon mixtures has been determined by applying a reliable model based n the Peng–Robinson cubic equation of state and the mixing rule for hydrocarbon mixtures. Finally, the Fminsearch algorithm has been used to optimize the result of 531 data points including 451 points for pure chlorofluorocarbons (167 points for saturated liquid chlorofluorocarbons, 284 points for unsaturated gaseous chlorofluorocarbons (R13, R32) and 80 points for binary mixtures. In this study, a large chlorofluorocarbon data set obtained for a wide pressure (3237–5805 kPa), and temperature (301.84–487.40 K) ranges has been used. The results show a similarity between the experimental data and the model results. For 17 pure chlorofluorocarbons considered in this study, the calculated average absolute deviation is 1.92%, and the average relative error for four two-component hydrocarbon mixtures is 5.28%. A difference between the predicted and the experimental viscosity for R13 and R32 was mainly 0.1. In general, the analyzed model is accurate and does not require the bulk density that represents its main advantage.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Petroleum Chemistry
Petroleum Chemistry 工程技术-工程:化工
CiteScore
2.50
自引率
21.40%
发文量
102
审稿时长
6-12 weeks
期刊介绍: Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas. Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信