{"title":"Characterising higher-order phase correlations in gain-switched laser sources with application to quantum key distribution","authors":"Alessandro Marcomini, Guillermo Currás-Lorenzo, Davide Rusca, Angel Valle, Kiyoshi Tamaki, Marcos Curty","doi":"10.1140/epjqt/s40507-025-00340-7","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-photon emissions in laser sources represent a serious threat for the security of quantum key distribution (QKD). While the decoy-state technique allows to solve this problem, it requires uniform phase randomisation of the emitted pulses. However, gain-switched lasers operating at high repetition rates do not fully satisfy this requirement, as residual photons in the laser cavity introduce correlations between the phases of consecutive pulses. Here, we introduce experimental schemes to characterise the phase probability distribution of the emitted pulses, and demonstrate that an optimisation task over interferometric measures suffices in determining the impact of arbitrary order correlations, which ultimately establishes the security level of the implementation according to recent security proofs. We expect that our findings may find usages beyond QKD as well.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00340-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00340-7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-photon emissions in laser sources represent a serious threat for the security of quantum key distribution (QKD). While the decoy-state technique allows to solve this problem, it requires uniform phase randomisation of the emitted pulses. However, gain-switched lasers operating at high repetition rates do not fully satisfy this requirement, as residual photons in the laser cavity introduce correlations between the phases of consecutive pulses. Here, we introduce experimental schemes to characterise the phase probability distribution of the emitted pulses, and demonstrate that an optimisation task over interferometric measures suffices in determining the impact of arbitrary order correlations, which ultimately establishes the security level of the implementation according to recent security proofs. We expect that our findings may find usages beyond QKD as well.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.