Intelligent hierarchical federated learning system based on semi-asynchronous and scheduled synchronous control strategies in satellite network

Qiang Mei, Rui Huang, Duo Li, Jingyi Li, Nan Shi, Mei Du, Yingkang Zhong, Chunqi Tian
{"title":"Intelligent hierarchical federated learning system based on semi-asynchronous and scheduled synchronous control strategies in satellite network","authors":"Qiang Mei,&nbsp;Rui Huang,&nbsp;Duo Li,&nbsp;Jingyi Li,&nbsp;Nan Shi,&nbsp;Mei Du,&nbsp;Yingkang Zhong,&nbsp;Chunqi Tian","doi":"10.1007/s43684-025-00095-z","DOIUrl":null,"url":null,"abstract":"<div><p>Federated learning (FL) is a technology that allows multiple devices to collaboratively train a global model without sharing original data, which is a hot topic in distributed intelligent systems. Combined with satellite network, FL can overcome the geographical limitation and achieve broader applications. However, it also faces the issues such as straggler effect, unreliable network environments and non-independent and identically distributed (Non-IID) samples. To address these problems, we propose an intelligent hierarchical FL system based on semi-asynchronous and scheduled synchronous control strategies in cloud-edge-client structure for satellite network. Our intelligent system effectively handles multiple client requests by distributing the communication load of the central cloud to various edge clouds. Additionally, the cloud server selection algorithm and the edge-client semi-asynchronous control strategy minimize clients’ waiting time, improving the overall efficiency of the FL process. Furthermore, the center-edge scheduled synchronous control strategy ensures the timeliness of partial models. Based on the experiment results, our proposed intelligent hierarchical FL system demonstrates a distinct advantage in global accuracy over traditional FedAvg, achieving 2% higher global accuracy within the same time frame and reducing 52% training time to achieve the target accuracy.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-025-00095-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-025-00095-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning (FL) is a technology that allows multiple devices to collaboratively train a global model without sharing original data, which is a hot topic in distributed intelligent systems. Combined with satellite network, FL can overcome the geographical limitation and achieve broader applications. However, it also faces the issues such as straggler effect, unreliable network environments and non-independent and identically distributed (Non-IID) samples. To address these problems, we propose an intelligent hierarchical FL system based on semi-asynchronous and scheduled synchronous control strategies in cloud-edge-client structure for satellite network. Our intelligent system effectively handles multiple client requests by distributing the communication load of the central cloud to various edge clouds. Additionally, the cloud server selection algorithm and the edge-client semi-asynchronous control strategy minimize clients’ waiting time, improving the overall efficiency of the FL process. Furthermore, the center-edge scheduled synchronous control strategy ensures the timeliness of partial models. Based on the experiment results, our proposed intelligent hierarchical FL system demonstrates a distinct advantage in global accuracy over traditional FedAvg, achieving 2% higher global accuracy within the same time frame and reducing 52% training time to achieve the target accuracy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信