Exploring Dynamics and Hardware Implementation of an Enhanced 5D Hyperchaotic Memristive System Inspired by Sprott-C System

Abdulmajeed Abdullah Mohammed Mokbel;Fei Yu;Yumba Musoya Gracia;Bohong Tan;Hairong Lin;Herbert Ho-Ching Iu
{"title":"Exploring Dynamics and Hardware Implementation of an Enhanced 5D Hyperchaotic Memristive System Inspired by Sprott-C System","authors":"Abdulmajeed Abdullah Mohammed Mokbel;Fei Yu;Yumba Musoya Gracia;Bohong Tan;Hairong Lin;Herbert Ho-Ching Iu","doi":"10.23919/CSMS.2024.0024","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel 5D hyperchaotic memristive system based on the Sprott-C system configuration, which greatly improves the complexity of the system to be used for secure communication and signal processing. A critical aspect of this research work is the introduction of a flux-controlled memristor that exhibits chaotic behavior and dynamic responses of the system. To this respect, detailed mathematical modeling and numerical simulations about the stability of the system's equilibria, bifurcations, and hyperchaotic dynamics were conducted and showed a very wide variety of behaviors of great potential in cryptographic applications and secure data transmission. Then, the flexibility and efficiency of the real-time operating environment were demonstrated, and the system was actually implemented on a field-programmable gate array (FPGA) hardware platform. A prototype that confirms the theoretical framework was presented, providing new insights for chaotic systems with practical significance. Finally, we conducted National Institute of Standards and Technology (NIST) testing on the proposed 5D hyperchaotic memristive system, and the results showed that the system has good randomness.","PeriodicalId":65786,"journal":{"name":"复杂系统建模与仿真(英文)","volume":"5 1","pages":"34-45"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934125","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"复杂系统建模与仿真(英文)","FirstCategoryId":"1089","ListUrlMain":"https://ieeexplore.ieee.org/document/10934125/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel 5D hyperchaotic memristive system based on the Sprott-C system configuration, which greatly improves the complexity of the system to be used for secure communication and signal processing. A critical aspect of this research work is the introduction of a flux-controlled memristor that exhibits chaotic behavior and dynamic responses of the system. To this respect, detailed mathematical modeling and numerical simulations about the stability of the system's equilibria, bifurcations, and hyperchaotic dynamics were conducted and showed a very wide variety of behaviors of great potential in cryptographic applications and secure data transmission. Then, the flexibility and efficiency of the real-time operating environment were demonstrated, and the system was actually implemented on a field-programmable gate array (FPGA) hardware platform. A prototype that confirms the theoretical framework was presented, providing new insights for chaotic systems with practical significance. Finally, we conducted National Institute of Standards and Technology (NIST) testing on the proposed 5D hyperchaotic memristive system, and the results showed that the system has good randomness.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信