Dynamic and Heterogeneous Identity-Based Cooperative Co-Evolution for Distributed Lot-Streaming Flowshop Scheduling Problem

Juan Wang;Guanghui Zhang;Xiaoling Li;Yanxiang Feng
{"title":"Dynamic and Heterogeneous Identity-Based Cooperative Co-Evolution for Distributed Lot-Streaming Flowshop Scheduling Problem","authors":"Juan Wang;Guanghui Zhang;Xiaoling Li;Yanxiang Feng","doi":"10.23919/CSMS.2024.0025","DOIUrl":null,"url":null,"abstract":"In this research, a novel dynamic and heterogeneous identity based cooperative co-evolutionary algorithm (DHICCA) is proposed for addressing the distributed lot-streaming flowshop scheduling problem (DLSFSP) with the objective to minimize the makespan. A two-layer-vector representation is devised to bridge the solution space of DLSFSP and the search space of DHICCA. In the evolution of DHICCA, population individuals are endowed with heterogeneous identities according to their quality, including superior individuals, ordinary individuals, and inferior individuals, which serve local exploitation, global exploration, and diversified restart, respectively. Because individuals with different identities require different evolutionary mechanisms to fully unleash their respective potentials, identity-specific evolutionary operators are devised to evolve them in a cooperative co-evolutionary way. This is important to use limited population resources to solve complex optimization problems. Specifically, exploitation is carried out on superior individuals by devising three exploitative operators with different intensities based on techniques of variable neighborhood, destruction-construction, and gene targeting. Exploration is executed on ordinary individuals by a newly constructed discrete Jaya algorithm and a probability crossover strategy. In addition, restart is performed on inferior individuals to introduce new evolutionary individuals to the population. After the cooperative co-evolution, all individuals with different identities are merged as a population again, and their identities are dynamically adjusted by new evaluation. The influence of parameters on the algorithm is investigated based on design-of-experiment and comprehensive computational experiments are used to evaluate the performance of all algorithms. The results validate the effectiveness of special designs and show that DHICCA performs more efficient than the existing state-of-the-art algorithms in solving the DLSFSP.","PeriodicalId":65786,"journal":{"name":"复杂系统建模与仿真(英文)","volume":"5 1","pages":"86-106"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934759","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"复杂系统建模与仿真(英文)","FirstCategoryId":"1089","ListUrlMain":"https://ieeexplore.ieee.org/document/10934759/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, a novel dynamic and heterogeneous identity based cooperative co-evolutionary algorithm (DHICCA) is proposed for addressing the distributed lot-streaming flowshop scheduling problem (DLSFSP) with the objective to minimize the makespan. A two-layer-vector representation is devised to bridge the solution space of DLSFSP and the search space of DHICCA. In the evolution of DHICCA, population individuals are endowed with heterogeneous identities according to their quality, including superior individuals, ordinary individuals, and inferior individuals, which serve local exploitation, global exploration, and diversified restart, respectively. Because individuals with different identities require different evolutionary mechanisms to fully unleash their respective potentials, identity-specific evolutionary operators are devised to evolve them in a cooperative co-evolutionary way. This is important to use limited population resources to solve complex optimization problems. Specifically, exploitation is carried out on superior individuals by devising three exploitative operators with different intensities based on techniques of variable neighborhood, destruction-construction, and gene targeting. Exploration is executed on ordinary individuals by a newly constructed discrete Jaya algorithm and a probability crossover strategy. In addition, restart is performed on inferior individuals to introduce new evolutionary individuals to the population. After the cooperative co-evolution, all individuals with different identities are merged as a population again, and their identities are dynamically adjusted by new evaluation. The influence of parameters on the algorithm is investigated based on design-of-experiment and comprehensive computational experiments are used to evaluate the performance of all algorithms. The results validate the effectiveness of special designs and show that DHICCA performs more efficient than the existing state-of-the-art algorithms in solving the DLSFSP.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信