Yao Gao;Qi Jiang;Shaohua Gao;Lei Sun;Kailun Yang;Kaiwei Wang
{"title":"Exploring Quasi-Global Solutions to Compound Lens Based Computational Imaging Systems","authors":"Yao Gao;Qi Jiang;Shaohua Gao;Lei Sun;Kailun Yang;Kaiwei Wang","doi":"10.1109/TCI.2025.3545357","DOIUrl":null,"url":null,"abstract":"Recently, joint design approaches that simultaneously optimize optical systems and downstream algorithms through data-driven learning have demonstrated superior performance over traditional separate design approaches. However, current joint design approaches heavily rely on the manual identification of initial lenses, posing challenges and limitations, particularly for compound lens systems with multiple potential starting points. In this work, we present Quasi-Global Search Optics (QGSO) to automatically design compound lens based computational imaging systems through two parts: (i) Fused Optimization Method for Automatic Optical Design (OptiFusion), which searches for diverse initial optical systems under certain design specifications; and (ii) Efficient Physic-aware Joint Optimization (EPJO), which conducts parallel joint optimization of initial optical systems and image reconstruction networks with the consideration of physical constraints, culminating in the selection of the optimal solution in all search results. Extensive experimental results illustrate that QGSO serves as a transformative end-to-end lens design paradigm for superior global search ability, which automatically provides compound lens based computational imaging systems with higher imaging quality compared to existing paradigms.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"333-348"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10902466/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, joint design approaches that simultaneously optimize optical systems and downstream algorithms through data-driven learning have demonstrated superior performance over traditional separate design approaches. However, current joint design approaches heavily rely on the manual identification of initial lenses, posing challenges and limitations, particularly for compound lens systems with multiple potential starting points. In this work, we present Quasi-Global Search Optics (QGSO) to automatically design compound lens based computational imaging systems through two parts: (i) Fused Optimization Method for Automatic Optical Design (OptiFusion), which searches for diverse initial optical systems under certain design specifications; and (ii) Efficient Physic-aware Joint Optimization (EPJO), which conducts parallel joint optimization of initial optical systems and image reconstruction networks with the consideration of physical constraints, culminating in the selection of the optimal solution in all search results. Extensive experimental results illustrate that QGSO serves as a transformative end-to-end lens design paradigm for superior global search ability, which automatically provides compound lens based computational imaging systems with higher imaging quality compared to existing paradigms.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.