Asymmetric Convolution-based GAN Framework for Low-Dose CT Image Denoising

IF 7 2区 医学 Q1 BIOLOGY
Naragoni Saidulu, Priya Ranjan Muduli
{"title":"Asymmetric Convolution-based GAN Framework for Low-Dose CT Image Denoising","authors":"Naragoni Saidulu,&nbsp;Priya Ranjan Muduli","doi":"10.1016/j.compbiomed.2025.109965","DOIUrl":null,"url":null,"abstract":"<div><div>Noise reduction is essential to improve the diagnostic quality of low-dose CT (LDCT) images. In this regard, data-driven denoising methods based on generative adversarial networks (GAN) have shown promising results. However, custom designs with 2D convolution may not preserve the correlation of the local and global pixels, which results in the loss of high-frequency (edges/ boundaries of lesions) anatomical details. A recent state-of-the-art method demonstrates that using primitive GAN-based methods may introduce structural (shape) distortion. To address this issue, we develop a novel asymmetric convolution-based generator network (ACGNet), which is constructed by using one-dimensional (1D) asymmetric convolutions and a dynamic attention module (DAM). The 1D asymmetric convolutions (1 × 3 &amp; 3 × 1) can intensify the representation power of square convolution kernels (3 × 3) in horizontal and vertical directions. Consequently, we integrated the highlighted low-level CT voxel details via purposed attention DAM with high-level CT-scan features. As a result, ACGNet efficiently preserves the local and global pixel relations in denoised LDCT images. Furthermore, we propose a novel neural structure preserving loss (NSPL) through which ACGNet learns the neighborhood structure of CT images, preventing structural (shape) distortion. In addition, the ACGNet can reconstruct the CT images with human-perceived quality via back-propagated gradients due to the feature-based NSPL loss. Finally, we include differential content loss in network optimization to restore high-frequency lesion boundaries. The proposed method outperforms many state-of-the-art methods on two publicly accessible datasets: the Mayo 2016 dataset (PSNR: 35.2015 dB, SSIM: 0.9560), and Low-dose CT image and projection dataset (PSNR: 35.2825 dB, SSIM: 0.9566).</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"190 ","pages":"Article 109965"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525003166","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Noise reduction is essential to improve the diagnostic quality of low-dose CT (LDCT) images. In this regard, data-driven denoising methods based on generative adversarial networks (GAN) have shown promising results. However, custom designs with 2D convolution may not preserve the correlation of the local and global pixels, which results in the loss of high-frequency (edges/ boundaries of lesions) anatomical details. A recent state-of-the-art method demonstrates that using primitive GAN-based methods may introduce structural (shape) distortion. To address this issue, we develop a novel asymmetric convolution-based generator network (ACGNet), which is constructed by using one-dimensional (1D) asymmetric convolutions and a dynamic attention module (DAM). The 1D asymmetric convolutions (1 × 3 & 3 × 1) can intensify the representation power of square convolution kernels (3 × 3) in horizontal and vertical directions. Consequently, we integrated the highlighted low-level CT voxel details via purposed attention DAM with high-level CT-scan features. As a result, ACGNet efficiently preserves the local and global pixel relations in denoised LDCT images. Furthermore, we propose a novel neural structure preserving loss (NSPL) through which ACGNet learns the neighborhood structure of CT images, preventing structural (shape) distortion. In addition, the ACGNet can reconstruct the CT images with human-perceived quality via back-propagated gradients due to the feature-based NSPL loss. Finally, we include differential content loss in network optimization to restore high-frequency lesion boundaries. The proposed method outperforms many state-of-the-art methods on two publicly accessible datasets: the Mayo 2016 dataset (PSNR: 35.2015 dB, SSIM: 0.9560), and Low-dose CT image and projection dataset (PSNR: 35.2825 dB, SSIM: 0.9566).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信