Retro-forward synthesis design and experimental validation of potent structural analogs of known drugs

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ahmad Makkawi, Wiktor Beker, Agnieszka Wolos, Sabyasachi Manna, Rafal Roszak, Sara Szymkuc, Martyna Moskal, Aleksei Koshevarnikov, Karol Molga, Anna Zadlo, Bartosz Andrzej Grzybowski
{"title":"Retro-forward synthesis design and experimental validation of potent structural analogs of known drugs","authors":"Ahmad Makkawi, Wiktor Beker, Agnieszka Wolos, Sabyasachi Manna, Rafal Roszak, Sara Szymkuc, Martyna Moskal, Aleksei Koshevarnikov, Karol Molga, Anna Zadlo, Bartosz Andrzej Grzybowski","doi":"10.1039/d5sc00070j","DOIUrl":null,"url":null,"abstract":"Generation of structural analogs to “parent” molecule(s) of interest remains one of the important elements of drug development. Ideally, such analogs should be synthesizable by concise and robust synthetic routes. The current work illustrates how this process can be facilitated by a computational pipeline spanning (i) diversification of the parent via bioisosteric replacements, (ii) retrosynthesis of the thus generated “replicas” to identify substrates, (iii) forward syntheses originating from these substrates (and synthetically versatile “auxiliaries”) and guided “towards” the parent, and (iv) evaluation of the candidates for target binding and other medicinal-chemical properties. This pipeline proposes syntheses to thousands of readily makeable analogs in a matter of minutes, and is deployed here to validate by experiment seven structural analogs of Ketoprofen and six analogs of Donepezil. The concise, computer-designed syntheses are confirmed in 12 out of 13 cases, offering access to several potent inhibitors. While the synthesis-design component is robust, binding affinities are predicted less accurately although still to the order-of-magnitude, which may be valuable in discerning promising from inadequate binders.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"8 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc00070j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Generation of structural analogs to “parent” molecule(s) of interest remains one of the important elements of drug development. Ideally, such analogs should be synthesizable by concise and robust synthetic routes. The current work illustrates how this process can be facilitated by a computational pipeline spanning (i) diversification of the parent via bioisosteric replacements, (ii) retrosynthesis of the thus generated “replicas” to identify substrates, (iii) forward syntheses originating from these substrates (and synthetically versatile “auxiliaries”) and guided “towards” the parent, and (iv) evaluation of the candidates for target binding and other medicinal-chemical properties. This pipeline proposes syntheses to thousands of readily makeable analogs in a matter of minutes, and is deployed here to validate by experiment seven structural analogs of Ketoprofen and six analogs of Donepezil. The concise, computer-designed syntheses are confirmed in 12 out of 13 cases, offering access to several potent inhibitors. While the synthesis-design component is robust, binding affinities are predicted less accurately although still to the order-of-magnitude, which may be valuable in discerning promising from inadequate binders.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信