Versatile Anisotropic Coarse-Grained Models for the Structure and Dynamics of Unentangled Poly(tetrafluoroethylene) Melt

IF 5.1 1区 化学 Q1 POLYMER SCIENCE
Yen-Ting Hsu, Hsiu-Yu Yu
{"title":"Versatile Anisotropic Coarse-Grained Models for the Structure and Dynamics of Unentangled Poly(tetrafluoroethylene) Melt","authors":"Yen-Ting Hsu, Hsiu-Yu Yu","doi":"10.1021/acs.macromol.4c02413","DOIUrl":null,"url":null,"abstract":"We develop anisotropic coarse-grained (CG) models for unentangled poly(tetrafluoroethylene) (PTFE) melts to investigate their structural and dynamical properties at two CG levels, corresponding to six and eight CF<sub>2</sub> groups per bead. Higher CG levels improve computational efficiency but face challenges, such as unphysical chain crossing due to reduced steric hindrance and weaker interactions. Additionally, the inherent chain stiffness of PTFE chains is evident. Analyses of the gyration tensor and asphericity indicate that structural anisotropy increases with CG levels. Therefore, we pursue a structure-based, bottom-up coarse-graining approach based on accurate all-atom (AA) simulations. Systematic probing of intermolecular interactions, internal conformations, and global chain dimensions reveals that our models effectively capture structural characteristics. Chain stiffness, such as the Kuhn length, agrees reasonably with AA simulations and experimental data. Furthermore, with appropriate scaling factors introduced, these CG models closely align with the atomistic counterpart in dynamics, including self-diffusivity and zero-shear viscosity. Assessments across molecular weights (48–192 carbons per chain) and temperatures (500 to 650 K) confirm the adaptability of these models. Utilizing the devised CG models, the computational efficiency is approximately accelerated by a factor of <i>N</i><sup>2</sup>, where <i>N</i> is the number of CF<sub>2</sub> groups per CG bead.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"7 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c02413","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We develop anisotropic coarse-grained (CG) models for unentangled poly(tetrafluoroethylene) (PTFE) melts to investigate their structural and dynamical properties at two CG levels, corresponding to six and eight CF2 groups per bead. Higher CG levels improve computational efficiency but face challenges, such as unphysical chain crossing due to reduced steric hindrance and weaker interactions. Additionally, the inherent chain stiffness of PTFE chains is evident. Analyses of the gyration tensor and asphericity indicate that structural anisotropy increases with CG levels. Therefore, we pursue a structure-based, bottom-up coarse-graining approach based on accurate all-atom (AA) simulations. Systematic probing of intermolecular interactions, internal conformations, and global chain dimensions reveals that our models effectively capture structural characteristics. Chain stiffness, such as the Kuhn length, agrees reasonably with AA simulations and experimental data. Furthermore, with appropriate scaling factors introduced, these CG models closely align with the atomistic counterpart in dynamics, including self-diffusivity and zero-shear viscosity. Assessments across molecular weights (48–192 carbons per chain) and temperatures (500 to 650 K) confirm the adaptability of these models. Utilizing the devised CG models, the computational efficiency is approximately accelerated by a factor of N2, where N is the number of CF2 groups per CG bead.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信