SpyDust: an improved and extended implementation for modeling spinning dust radiation

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Zheng Zhang and Jens Chluba
{"title":"SpyDust: an improved and extended implementation for modeling spinning dust radiation","authors":"Zheng Zhang and Jens Chluba","doi":"10.1088/1475-7516/2025/03/038","DOIUrl":null,"url":null,"abstract":"This paper presents SpyDust, an improved and extended implementation of the spinning dust emission model based on a Fokker-Planck treatment. SpyDust serves not only as a Python successor to spdust, but also incorporates some corrections and extensions. Unlike spdust, which is focused on specific grain shapes, SpyDust considers a wider range of grain shapes and provides the corresponding grain dynamics, directional radiation field and angular momentum transports. We recognise the unique effects of different grain shapes on emission, in particular the shape-dependent mapping between rotational frequency and spectral frequency. In addition, we update the expressions for effects of electrical dipole radiation back-reaction and plasma drag on angular momentum dissipation. We also discuss the degeneracies in describing the shape of the spectral energy distribution (SED) of spinning dust grains with the interstellar environmental parameters. Using a typical Cold Neutral Medium (CNM) environment as an example, we perform a perturbative analysis of the model parameters, revealing strong positive or negative correlations between them. A principal component analysis (PCA) shows that four dominant modes can linearly capture most of the SED variations, highlighting the degeneracy in the parameter space of the SED shape in the vicinity of the chosen CNM environment. This opens the possibility for future applications of moment expansion methods to reduce the dimensionality of the encountered SED parameter space.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"32 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/03/038","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents SpyDust, an improved and extended implementation of the spinning dust emission model based on a Fokker-Planck treatment. SpyDust serves not only as a Python successor to spdust, but also incorporates some corrections and extensions. Unlike spdust, which is focused on specific grain shapes, SpyDust considers a wider range of grain shapes and provides the corresponding grain dynamics, directional radiation field and angular momentum transports. We recognise the unique effects of different grain shapes on emission, in particular the shape-dependent mapping between rotational frequency and spectral frequency. In addition, we update the expressions for effects of electrical dipole radiation back-reaction and plasma drag on angular momentum dissipation. We also discuss the degeneracies in describing the shape of the spectral energy distribution (SED) of spinning dust grains with the interstellar environmental parameters. Using a typical Cold Neutral Medium (CNM) environment as an example, we perform a perturbative analysis of the model parameters, revealing strong positive or negative correlations between them. A principal component analysis (PCA) shows that four dominant modes can linearly capture most of the SED variations, highlighting the degeneracy in the parameter space of the SED shape in the vicinity of the chosen CNM environment. This opens the possibility for future applications of moment expansion methods to reduce the dimensionality of the encountered SED parameter space.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信