{"title":"Metabolic Engineering and Adaptive Evolution of Escherichia coli for Enhanced Conversion of D‑Xylose to D-Glucaric Acid Mediated by Methanol","authors":"Wei-Xiang Chen, Ling-Jie Zheng, Xuan Luo, Shang-He Zheng, Hui-Dong Zheng, Li-Hai Fan, Qiang Guo","doi":"10.1002/bit.28974","DOIUrl":null,"url":null,"abstract":"<span>d</span>-Glucaric acid is a value-added dicarboxylic acid that can be utilized in the chemical, food, and pharmaceutical industries. Due to the complex process and environmental pollution associated with the chemical production of <span>d</span>-glucaric acid, bioconversion for its synthesis has garnered increasing attention in recent years. In this study, a novel cell factory was developed for the efficient production of <span>d</span>-glucaric acid using <span>d</span>-xylose and methanol. Mdh, Hps, Phi, Miox, Ino1, Suhb, and Udh were first co-expressed in <i>E. coli</i> JM109 to construct the <span>d</span>-glucaric acid synthesis pathway. The deletion of FrmRAB, RpiA, PfkA, and PfkB was then performed to block or weaken the endogenous competitive pathways. Next, adaptive evolution was carried out to improve cell growth and substrate utilization. With the purpose of further increasing the product titer, the NusA tag and myo-inositol biosensor were introduced into engineered <i>E. coli</i> to enhance Miox expression. After medium optimization and fermentation process control, 3.0 g/L of <span>d</span>-glucaric acid was finally obtained in the fed-batch fermentation using modified Terrific Broth medium.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"40 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28974","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
d-Glucaric acid is a value-added dicarboxylic acid that can be utilized in the chemical, food, and pharmaceutical industries. Due to the complex process and environmental pollution associated with the chemical production of d-glucaric acid, bioconversion for its synthesis has garnered increasing attention in recent years. In this study, a novel cell factory was developed for the efficient production of d-glucaric acid using d-xylose and methanol. Mdh, Hps, Phi, Miox, Ino1, Suhb, and Udh were first co-expressed in E. coli JM109 to construct the d-glucaric acid synthesis pathway. The deletion of FrmRAB, RpiA, PfkA, and PfkB was then performed to block or weaken the endogenous competitive pathways. Next, adaptive evolution was carried out to improve cell growth and substrate utilization. With the purpose of further increasing the product titer, the NusA tag and myo-inositol biosensor were introduced into engineered E. coli to enhance Miox expression. After medium optimization and fermentation process control, 3.0 g/L of d-glucaric acid was finally obtained in the fed-batch fermentation using modified Terrific Broth medium.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.