PointSea: Point Cloud Completion via Self-structure Augmentation

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhe Zhu, Honghua Chen, Xing He, Mingqiang Wei
{"title":"PointSea: Point Cloud Completion via Self-structure Augmentation","authors":"Zhe Zhu, Honghua Chen, Xing He, Mingqiang Wei","doi":"10.1007/s11263-025-02400-y","DOIUrl":null,"url":null,"abstract":"<p>Point cloud completion is a fundamental yet not well-solved problem in 3D vision. Current approaches often rely on 3D coordinate information and/or additional data (e.g., images and scanning viewpoints) to fill in missing parts. Unlike these methods, we explore self-structure augmentation and propose <b>PointSea</b> for global-to-local point cloud completion. In the global stage, consider how we inspect a defective region of a physical object, we may observe it from various perspectives for a better understanding. Inspired by this, PointSea augments data representation by leveraging self-projected depth images from multiple views. To reconstruct a compact global shape from the cross-modal input, we incorporate a feature fusion module to fuse features at both intra-view and inter-view levels. In the local stage, to reveal highly detailed structures, we introduce a point generator called the self-structure dual-generator. This generator integrates both learned shape priors and geometric self-similarities for shape refinement. Unlike existing efforts that apply a unified strategy for all points, our dual-path design adapts refinement strategies conditioned on the structural type of each point, addressing the specific incompleteness of each point. Comprehensive experiments on widely-used benchmarks demonstrate that PointSea effectively understands global shapes and generates local details from incomplete input, showing clear improvements over existing methods. Our code is available at https://github.com/czvvd/SVDFormer_PointSea.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"20 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02400-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Point cloud completion is a fundamental yet not well-solved problem in 3D vision. Current approaches often rely on 3D coordinate information and/or additional data (e.g., images and scanning viewpoints) to fill in missing parts. Unlike these methods, we explore self-structure augmentation and propose PointSea for global-to-local point cloud completion. In the global stage, consider how we inspect a defective region of a physical object, we may observe it from various perspectives for a better understanding. Inspired by this, PointSea augments data representation by leveraging self-projected depth images from multiple views. To reconstruct a compact global shape from the cross-modal input, we incorporate a feature fusion module to fuse features at both intra-view and inter-view levels. In the local stage, to reveal highly detailed structures, we introduce a point generator called the self-structure dual-generator. This generator integrates both learned shape priors and geometric self-similarities for shape refinement. Unlike existing efforts that apply a unified strategy for all points, our dual-path design adapts refinement strategies conditioned on the structural type of each point, addressing the specific incompleteness of each point. Comprehensive experiments on widely-used benchmarks demonstrate that PointSea effectively understands global shapes and generates local details from incomplete input, showing clear improvements over existing methods. Our code is available at https://github.com/czvvd/SVDFormer_PointSea.

PointSea:通过自结构增强完成点云
点云补全是三维视觉中的一个基本问题,但尚未得到很好的解决。目前的方法通常依赖于3D坐标信息和/或额外的数据(例如,图像和扫描视点)来填补缺失的部分。与这些方法不同,我们探索自结构增强,并提出PointSea用于全局到局部点云补全。在全球范围内,考虑我们如何检查一个物理对象的缺陷区域,我们可以从不同的角度观察它,以便更好地理解。受此启发,PointSea通过利用来自多个视图的自投影深度图像来增强数据表示。为了从跨模态输入中重建紧凑的全局形状,我们结合了一个特征融合模块来融合视图内和视图间级别的特征。在局部阶段,为了揭示高度详细的结构,我们引入了一种称为自结构双发生器的点发生器。该生成器将学习到的形状先验和几何自相似性结合起来进行形状优化。与对所有点应用统一策略的现有工作不同,我们的双路径设计采用了基于每个点的结构类型的优化策略,解决了每个点的特定不完整性。在广泛使用的基准测试中进行的综合实验表明,PointSea可以有效地理解全局形状,并从不完整的输入中生成局部细节,与现有方法相比有了明显的改进。我们的代码可在https://github.com/czvvd/SVDFormer_PointSea上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信