Impairment of homeostatic structural plasticity caused by the autism and schizophrenia-associated 16p11.2 duplication.

M P Forrest, N H Piguel, V A Bagchi, L E Dionisio, S Yoon, M Dos Santos, M S LeDoux, P Penzes
{"title":"Impairment of homeostatic structural plasticity caused by the autism and schizophrenia-associated 16p11.2 duplication.","authors":"M P Forrest, N H Piguel, V A Bagchi, L E Dionisio, S Yoon, M Dos Santos, M S LeDoux, P Penzes","doi":"10.1101/2025.03.06.641931","DOIUrl":null,"url":null,"abstract":"<p><p>Homeostatic plasticity is essential for information processing and the stability of neuronal circuits, however its relevance to neuropsychiatric disorders remains unclear. The 16p11.2 duplication (BP4-BP5) is a genetic risk factor that strongly predisposes to a range of severe mental illnesses including autism, schizophrenia, intellectual disability, and epilepsy. The duplication consists of a 600 kb region on chromosome 16, including 27 protein-coding genes, with poorly defined effects on neuronal structure and function. Here, we used a mouse model of the 16p11.2 duplication to investigate the impact of this variant on synaptic structure and downstream homeostatic plasticity. We find that 16p11.2 duplication neurons exhibit overly branched dendritic arbors and excessive spine numbers, which host an overabundance of surface AMPA receptor subunit GluA1. Using a homeostatic plasticity paradigm, we show that 16p11.2 duplication neurons fail to undergo synaptic upscaling upon activity deprivation, consistent with disrupted structural plasticity. We also observe that the increased surface abundance of GluA1 occludes further insertion events, a critical mechanism for synaptic plasticity. Finally, we show that genetically correcting the dosage of 16p11.2-encoded <i>Prrt2</i> to wild-type levels rescues structural spine phenotypes. Our work suggests that aberrant plasticity could contribute to the etiology of neuropsychiatric disorders.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.06.641931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Homeostatic plasticity is essential for information processing and the stability of neuronal circuits, however its relevance to neuropsychiatric disorders remains unclear. The 16p11.2 duplication (BP4-BP5) is a genetic risk factor that strongly predisposes to a range of severe mental illnesses including autism, schizophrenia, intellectual disability, and epilepsy. The duplication consists of a 600 kb region on chromosome 16, including 27 protein-coding genes, with poorly defined effects on neuronal structure and function. Here, we used a mouse model of the 16p11.2 duplication to investigate the impact of this variant on synaptic structure and downstream homeostatic plasticity. We find that 16p11.2 duplication neurons exhibit overly branched dendritic arbors and excessive spine numbers, which host an overabundance of surface AMPA receptor subunit GluA1. Using a homeostatic plasticity paradigm, we show that 16p11.2 duplication neurons fail to undergo synaptic upscaling upon activity deprivation, consistent with disrupted structural plasticity. We also observe that the increased surface abundance of GluA1 occludes further insertion events, a critical mechanism for synaptic plasticity. Finally, we show that genetically correcting the dosage of 16p11.2-encoded Prrt2 to wild-type levels rescues structural spine phenotypes. Our work suggests that aberrant plasticity could contribute to the etiology of neuropsychiatric disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信