Radiology AI Lab: Evaluation of Radiology Applications with Clinical End-Users.

Olivier Paalvast, Merlijn Sevenster, Omar Hertgers, Hubrecht de Bliek, Victor Wijn, Vincent Buil, Jaap Knoester, Sandra Vosbergen, Hildo Lamb
{"title":"Radiology AI Lab: Evaluation of Radiology Applications with Clinical End-Users.","authors":"Olivier Paalvast, Merlijn Sevenster, Omar Hertgers, Hubrecht de Bliek, Victor Wijn, Vincent Buil, Jaap Knoester, Sandra Vosbergen, Hildo Lamb","doi":"10.1007/s10278-025-01453-2","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the approval of over 200 artificial intelligence (AI) applications for radiology in the European Union, widespread adoption in clinical practice remains limited. Current assessments of AI applications often rely on post-hoc evaluations, lacking the granularity to capture real-time radiologist-AI interactions. The purpose of the study is to realise the Radiology AI lab for real-time, objective measurement of the impact of AI applications on radiologists' workflows. We proposed the user-state sensing framework (USSF) to structure the sensing of radiologist-AI interactions in terms of personal, interactional, and contextual states. Guided by the USSF, a lab was established using three non-invasive biometric measurement techniques: eye-tracking, heart rate monitoring, and facial expression analysis. We conducted a pilot test with four radiologists of varying experience levels, who read ultra-low-dose (ULD) CT cases in (1) standard PACS and (2) manually annotated (to mimic AI) PACS workflows. Interpretation time, eye-tracking metrics, heart rate variability (HRV), and facial expressions were recorded and analysed. The Radiology AI lab was successfully realised as an initial physical iteration of the USSF at a tertiary referral centre. Radiologists participating in the pilot test read 32 ULDCT cases (mean age, 52 years ± 23 (SD); 17 male; 16 cases with abnormalities). Cases were read on average in 4.1 ± 2.2 min (standard PACS) and 3.9 ± 1.9 min (AI-annotated PACS), with no significant difference (p = 0.48). Three out of four radiologists showed significant shifts (p < 0.02) in eye-tracking metrics, including saccade duration, saccade quantity, fixation duration, fixation quantity, and pupil diameter, when using the AI-annotated workflow. These changes align with prior findings linking such metrics to increased competency and reduced cognitive load, suggesting a more efficient visual search strategy in AI-assisted interpretation. Although HRV metrics did not correlate with experience, when combined with facial expression analysis, they helped identify key moments during the pilot test. The Radiology AI lab was successfully realised, implementing personal, interactional, and contextual states of the user-state sensing framework, enabling objective analysis of radiologists' workflows, and effectively capturing relevant biometrics. Future work will focus on expanding sensing of the contextual state of the user-state sensing framework, refining baseline determination, and continuing investigation of AI-enabled tools in radiology workflows.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01453-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the approval of over 200 artificial intelligence (AI) applications for radiology in the European Union, widespread adoption in clinical practice remains limited. Current assessments of AI applications often rely on post-hoc evaluations, lacking the granularity to capture real-time radiologist-AI interactions. The purpose of the study is to realise the Radiology AI lab for real-time, objective measurement of the impact of AI applications on radiologists' workflows. We proposed the user-state sensing framework (USSF) to structure the sensing of radiologist-AI interactions in terms of personal, interactional, and contextual states. Guided by the USSF, a lab was established using three non-invasive biometric measurement techniques: eye-tracking, heart rate monitoring, and facial expression analysis. We conducted a pilot test with four radiologists of varying experience levels, who read ultra-low-dose (ULD) CT cases in (1) standard PACS and (2) manually annotated (to mimic AI) PACS workflows. Interpretation time, eye-tracking metrics, heart rate variability (HRV), and facial expressions were recorded and analysed. The Radiology AI lab was successfully realised as an initial physical iteration of the USSF at a tertiary referral centre. Radiologists participating in the pilot test read 32 ULDCT cases (mean age, 52 years ± 23 (SD); 17 male; 16 cases with abnormalities). Cases were read on average in 4.1 ± 2.2 min (standard PACS) and 3.9 ± 1.9 min (AI-annotated PACS), with no significant difference (p = 0.48). Three out of four radiologists showed significant shifts (p < 0.02) in eye-tracking metrics, including saccade duration, saccade quantity, fixation duration, fixation quantity, and pupil diameter, when using the AI-annotated workflow. These changes align with prior findings linking such metrics to increased competency and reduced cognitive load, suggesting a more efficient visual search strategy in AI-assisted interpretation. Although HRV metrics did not correlate with experience, when combined with facial expression analysis, they helped identify key moments during the pilot test. The Radiology AI lab was successfully realised, implementing personal, interactional, and contextual states of the user-state sensing framework, enabling objective analysis of radiologists' workflows, and effectively capturing relevant biometrics. Future work will focus on expanding sensing of the contextual state of the user-state sensing framework, refining baseline determination, and continuing investigation of AI-enabled tools in radiology workflows.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信