Blood Oxygenation Quantification in Multispectral Photoacoustic Tomography Using A Convex Cone Approach.

Chuhua Wu, Hongzhi Zuo, Manxiu Cui, Handi Deng, Yuwen Chen, Xuanhao Wang, Bangyan Wang, Cheng Ma
{"title":"Blood Oxygenation Quantification in Multispectral Photoacoustic Tomography Using A Convex Cone Approach.","authors":"Chuhua Wu, Hongzhi Zuo, Manxiu Cui, Handi Deng, Yuwen Chen, Xuanhao Wang, Bangyan Wang, Cheng Ma","doi":"10.1109/TMI.2025.3551744","DOIUrl":null,"url":null,"abstract":"<p><p>Multispectral photoacoustic tomography (PAT) can create high spatial and temporal resolution images of oxygen saturation (sO<sub>2</sub>) distribution in deep tissue. However, unknown distributions of photon absorption and scattering introduces complex modulations to the photoacoustic (PA) spectra, dramatically reducing the accuracy of SO<sub>2</sub> quantification. In this study, a rigorous light transport model was employed to unveil that the PA spectra corresponding to distinct SO<sub>2</sub> values can be constrained within separate convex cones (CCs). Based on the CC model, SO<sub>2</sub> estimation is achieved by identifying the CC nearest to the measured data through a modified Gilbert-Johnson-Keerthi (GJK) algorithm. The CC method combines a rigorous physical model with data-driven approach, and shows outstanding robustness in numerical, phantom, and in vivo imaging experiments validated against ground truth measurements. The average SO<sub>2</sub> estimation error is approximately only 3% in in vivo human experiments, underscoring its potential for clinical application. All of our computer codes and data are publicly available on GitHub.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2025.3551744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multispectral photoacoustic tomography (PAT) can create high spatial and temporal resolution images of oxygen saturation (sO2) distribution in deep tissue. However, unknown distributions of photon absorption and scattering introduces complex modulations to the photoacoustic (PA) spectra, dramatically reducing the accuracy of SO2 quantification. In this study, a rigorous light transport model was employed to unveil that the PA spectra corresponding to distinct SO2 values can be constrained within separate convex cones (CCs). Based on the CC model, SO2 estimation is achieved by identifying the CC nearest to the measured data through a modified Gilbert-Johnson-Keerthi (GJK) algorithm. The CC method combines a rigorous physical model with data-driven approach, and shows outstanding robustness in numerical, phantom, and in vivo imaging experiments validated against ground truth measurements. The average SO2 estimation error is approximately only 3% in in vivo human experiments, underscoring its potential for clinical application. All of our computer codes and data are publicly available on GitHub.

采用凸锥方法的多光谱光声断层成像中的血氧定量。
多光谱光声层析成像技术(PAT)可以获得深部组织中氧饱和度(sO2)分布的高时空分辨率图像。然而,未知的光子吸收和散射分布给光声(PA)光谱带来了复杂的调制,极大地降低了二氧化硫定量的准确性。本研究采用严格的光输运模型揭示了不同SO2值对应的PA光谱可以被约束在不同的凸锥(cc)内。在CC模型的基础上,通过改进的Gilbert-Johnson-Keerthi (GJK)算法识别最接近测量数据的CC,实现SO2估计。CC方法结合了严格的物理模型和数据驱动方法,并在数值、幻影和体内成像实验中显示出出色的鲁棒性,这些实验经过了地面真值测量的验证。在人体体内实验中,平均SO2估计误差约为3%,强调了其临床应用的潜力。我们所有的计算机代码和数据在GitHub上都是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信