Multimodal AI predicts clinical outcomes of drug combinations from preclinical data.

ArXiv Pub Date : 2025-09-24
Yepeng Huang, Xiaorui Su, Varun Ullanat, Intae Moon, Ivy Liang, Lindsay Clegg, Damilola Olabode, Ruthie Johnson, Nicholas Ho, Megan Gibbs, Megan Gibbs, Alexander Gusev, Bino John, Marinka Zitnik
{"title":"Multimodal AI predicts clinical outcomes of drug combinations from preclinical data.","authors":"Yepeng Huang, Xiaorui Su, Varun Ullanat, Intae Moon, Ivy Liang, Lindsay Clegg, Damilola Olabode, Ruthie Johnson, Nicholas Ho, Megan Gibbs, Megan Gibbs, Alexander Gusev, Bino John, Marinka Zitnik","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting clinical outcomes from preclinical data is essential for identifying safe and effective drug combinations, reducing late-stage clinical failures, and accelerating the development of precision therapies. Current AI models rely on structural or target-based features but fail to incorporate the multimodal data necessary for accurate, clinically relevant predictions. Here, we introduce Madrigal, a multimodal AI model that learns from structural, pathway, cell viability, and transcriptomic data to predict drug-combination effects across 953 clinical outcomes and 21,842 compounds, including combinations of approved drugs and novel compounds in development. Madrigal uses an attention bottleneck module to unify preclinical drug data modalities while handling missing data during training and inference, a major challenge in multimodal learning. It outperforms single-modality methods and state-of-the-art models in predicting adverse drug interactions, and ablations show both modality alignment and multimodality are necessary. It captures transporter-mediated interactions and aligns with head-to-head clinical trial differences for neutropenia, anemia, alopecia, and hypoglycemia. In type 2 diabetes and MASH, Madrigal supports polypharmacy decisions and prioritizes resmetirom among safer candidates. Extending to personalization, Madrigal improves patient-level adverse-event prediction in a longitudinal EHR cohort and an independent oncology cohort, and predicts ex vivo efficacy in primary acute myeloid leukemia samples and patient-derived xenograft models. Madrigal links preclinical multimodal readouts to safety risks of drug combinations and offers a generalizable foundation for safer combination design.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting clinical outcomes from preclinical data is essential for identifying safe and effective drug combinations, reducing late-stage clinical failures, and accelerating the development of precision therapies. Current AI models rely on structural or target-based features but fail to incorporate the multimodal data necessary for accurate, clinically relevant predictions. Here, we introduce Madrigal, a multimodal AI model that learns from structural, pathway, cell viability, and transcriptomic data to predict drug-combination effects across 953 clinical outcomes and 21,842 compounds, including combinations of approved drugs and novel compounds in development. Madrigal uses an attention bottleneck module to unify preclinical drug data modalities while handling missing data during training and inference, a major challenge in multimodal learning. It outperforms single-modality methods and state-of-the-art models in predicting adverse drug interactions, and ablations show both modality alignment and multimodality are necessary. It captures transporter-mediated interactions and aligns with head-to-head clinical trial differences for neutropenia, anemia, alopecia, and hypoglycemia. In type 2 diabetes and MASH, Madrigal supports polypharmacy decisions and prioritizes resmetirom among safer candidates. Extending to personalization, Madrigal improves patient-level adverse-event prediction in a longitudinal EHR cohort and an independent oncology cohort, and predicts ex vivo efficacy in primary acute myeloid leukemia samples and patient-derived xenograft models. Madrigal links preclinical multimodal readouts to safety risks of drug combinations and offers a generalizable foundation for safer combination design.

多模式人工智能根据临床前数据预测药物组合的临床结果。
根据临床前数据预测临床结果对于确定安全有效的药物组合至关重要。目前的模型依赖于结构或基于靶标的特征来识别高效、低毒的药物组合。然而,这些方法未能纳入准确的、与临床相关的预测所需的多模态数据。在这里,我们介绍了MADRIGAL,这是一种多模式人工智能模型,可以从结构、途径、细胞活力和转录组学数据中学习,以预测953种临床结果和21842种化合物的药物组合效应,包括已批准药物和正在开发的新化合物的组合。MADRIGAL使用一个变压器瓶颈模块来统一临床前药物数据模式,同时在训练和推理过程中处理缺失的数据——这是多模式学习的一个主要挑战。它在预测药物不良相互作用方面优于单模态方法和最先进的模型。MADRIGAL进行抗癌药物组合的虚拟筛选,并支持II型糖尿病和代谢功能障碍相关脂肪性肝炎(MASH)的多药管理。它识别转运体介导的药物相互作用。MADRIGAL预测resmetirom,第一个也是唯一一个fda批准的治疗MASH的药物,是最有利的安全性的治疗方法之一。它通过整合癌症患者的基因组图谱来支持个性化的癌症治疗。使用原发性急性髓系白血病样本和患者来源的异种移植模型,它预测了个性化药物组合的疗效。将MADRIGAL与大型语言模型集成,允许用户用自然语言描述临床结果,通过识别潜在的不良相互作用和毒性风险来改进安全性评估。MADRIGAL为设计联合疗法提供了多模式方法,提高了预测准确性和临床相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信