Cryptic diversity, phenotypic congruence, and evolutionary history of the Leptobotia citrauratea complex (Pisces: Botiidae) within subtropical eastern China.

IF 2.3 Q2 ECOLOGY
Dongming Guo, Xiong Gong, Wenjing Yi, Liang Cao, E Zhang
{"title":"Cryptic diversity, phenotypic congruence, and evolutionary history of the Leptobotia citrauratea complex (Pisces: Botiidae) within subtropical eastern China.","authors":"Dongming Guo, Xiong Gong, Wenjing Yi, Liang Cao, E Zhang","doi":"10.1186/s12862-025-02362-2","DOIUrl":null,"url":null,"abstract":"<p><p>Elucidating the emergence and maintenance of cryptic diversity is a major focus of evolutionary biology. Integrative taxonomy is widely considered as the best practice for delimiting cryptic species and exploring cryptic speciation. This approach is used here to study the Leptobotia citrauratea complex, a group of small-sized loaches so far found in subtropical floodplains and hills of eastern China. A total 170 specimens were collected from 24 sampling sites, encompassing geographical variations and divergent habitas. Six putative species, out of which two are cryptic, were delineated by integrating molecular (two mtDNA and three nuDNA genes) and morphological analyses. These species constituted three ecotypes, exhibiting phenotypic disparities concordant with a habitat transition from high- to low-flow environments. Phenotypic similarities among them were shown to not align with their phylogenetic relationships but closely correlate with habitat utilization. Convergent evolution, driven by similar selective pressure associated with habitat-specific use, likely accounts for the cryptic diversity unveiled in the recently diverging species complex. The diversification of this species complex began in the late Pliocene, coinciding with tectonic activities in the subtropical region of eastern China. Subsequent rapid differentiation during the Pleistocene was possibly driven by regional climate fluctuations. This evolutionary trajectory highlights the crucial roles of geological, climate and ecological factors in shaping biodiversity in this region.</p>","PeriodicalId":93910,"journal":{"name":"BMC ecology and evolution","volume":"25 1","pages":"23"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912635/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC ecology and evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12862-025-02362-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Elucidating the emergence and maintenance of cryptic diversity is a major focus of evolutionary biology. Integrative taxonomy is widely considered as the best practice for delimiting cryptic species and exploring cryptic speciation. This approach is used here to study the Leptobotia citrauratea complex, a group of small-sized loaches so far found in subtropical floodplains and hills of eastern China. A total 170 specimens were collected from 24 sampling sites, encompassing geographical variations and divergent habitas. Six putative species, out of which two are cryptic, were delineated by integrating molecular (two mtDNA and three nuDNA genes) and morphological analyses. These species constituted three ecotypes, exhibiting phenotypic disparities concordant with a habitat transition from high- to low-flow environments. Phenotypic similarities among them were shown to not align with their phylogenetic relationships but closely correlate with habitat utilization. Convergent evolution, driven by similar selective pressure associated with habitat-specific use, likely accounts for the cryptic diversity unveiled in the recently diverging species complex. The diversification of this species complex began in the late Pliocene, coinciding with tectonic activities in the subtropical region of eastern China. Subsequent rapid differentiation during the Pleistocene was possibly driven by regional climate fluctuations. This evolutionary trajectory highlights the crucial roles of geological, climate and ecological factors in shaping biodiversity in this region.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信